forcasting recurrence

need to forecast a recurrence:
attached is a graph that we are suppose to use to answer the questions. The questions are also attached to this post. I am soo confused about this exercise!. SO if someone could do this that would be GREAT!!!.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

2

>

Sheet

1

cst

Period

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper
1

2

1

2

2

1

0.2 2

2

2

0.2 3

.

0.2 4

.

8

0.2 5

6

.

0.2 6

7

8

.7

0.2 7

8 1

.

44

0.2 8

9

.8

0.2 9

119

8

0.2 10

11

.9

8

9

0.2 11

12

.7

8

36

0.2 12

13

.

15

9

0.2 13

14

.

1

8

79

0.2 14

15

.

69

0

3

0.2 15

16

5

6

9

0.2 16

17

.7

9

0.2 17

18

0.2 18

19

.

67

0

0.2 19

1

20

.7

80

7

0.2 20

21

.

6

0.2 21

22

.58

4

29

0.2 22 2.6

23

73

8

3

0.2 23

24

3

02

0.2 24

25

3

42

0.2 25

1

26

06

4

0.2 26 2.6

27

.0

9

0.2 27

4

28

49

45

0.2 28

29

.99

56

0.2 29

30

.

45

0.2 30

31

.39

6

0.2 31

1

32 199

.1

5

0.2 32 3.1

33

.29

67

0.2 33

34

.

045

63

0.2 34

35

7

0.2 35

36

.90

0

0.2 36

37

0.2 37

38

.

9

1

0.2 38

39

19

0.2 39

3

40

.0

0.2 40

41

.

9

0.2 41

42

.

8

0.2 42

43

.

87

07

0.2 43

44

4

7

5

0.2 44

45

5

0.2 45

46

.0

9

68

0.2 46

47 172

.2

7

55

0.2 47

48 194

.1

80

4

0.2 48

49 196

.74

43

0.2 49 0.91

50 196

9

7

6

0.2 50

51 236

588

0.2 51 2.44

52

.

7

0.2 52

53

.094

6

0.2 53

54

7

09

0.2 54

7

55 264

.

7

0.2 55

56

.

0

0.2 56 2.7

57

4

8

2

0.2 57 2.8

58

9

8

5

0.2 58

59 180

.9

1

6

0.2 59

60

.

0.2 60 3.21

61 204

.45

66

0.2 61 3.2

62

.76

2

3

0.2 62 3.38

63 235

70

0.2 63

64

96

8

0.2 64

234

031

0.2 65

66 264

.

5

0.2 66

9

67

0.2 67

5

68

07

0

0.2 68

6

69 259

07

55

0.2 69 3.31

70 229

76

0.2 70

71 203

2

2

1

0.2 71 3.29

72 229

.2178

027

0.2 72

73 242

74

1

0.2 73 2.3

74

7

9

7

0.2 74 2.3

75

8

2

0.2 75

76

7

0.2 76 2.3

77 270

.5

0.2 77

78

92

0.2 78 2.25

79

.

3

0.2 79 2.24

80

1

55

0.2 80

81 312

.43

42

0.2 81

82 274

.347

7

0.2 82

83 237

1

2

0.2 83 2.29

84 278

6

229

49

0.2 84

85 284

64

0.2 85 2.24

86

02

0.2 86 2.39

87

.

69

89

0.2 87

88

.64

51

0.2 88 2.3

89

2

0.2 89 2.48

90 374

.

0284

0.2 90 2.6

91 413

0

7

0.2 91

92

.

6

0.2 92

93 355

0.2 93 2.72

94

.19

64

0.2 94 2.73

95 271

0.2 95 2.69

96 306

.64

7

0.2 96 2.73

97 315

.

0

0.2 97

98 301

.0112

0.2 98 2.82

99 356

06

0.2 99

100

07

6

0.2 100

355

.

0

0.2 101

422

.55

46

0.2 102 2.87

103 465

0.2 103

104 467

0.2 104 2.92

.

2

0.2 105

347

8

7

9

0.2 106 2.9

107

297

553

0.2 107

108

1

2

0.2 108 2.99

109 340

04

14

0.2 109

110 318

.2424

011

0.2 110

362

.1

46

9

0.2 111 3.38

112 348

07

0.2 112

1

0.2 113

114 435

.9

00

3

0.2 114 3.52

115

2404

0.2 115 3.52

116

23566

0.2 116 3.53

117 404

4

38

0.2 117

359

83

0.2 118

119

.96

66

0.2 119

120 337

.

65

93

0.2 120 3.48

121

20394

0.2 121

122 342

8

315

0.2 122 3.5

.93

52

0.2 123 3.53

124

.9

288

0.2 124

125

5

79

073

0.2 125

4

126

8

6

9

0.2 126

548

.7

0.2 127

128

871

0.2 128

129 463

7

3

8

0.2 129 3.93

407

03

4

0.2 130 3.93

362

28

0.2 131

132 405

103

0.2 132 3.8

133 417

.97

77

0.2 133 3.84

134

8

46

0.2 134 3.84

135

0.2 135

136

91

0.2 136 4.03

137 472

7

9

0.2 137

138 535

7

9

5

0.2 138

622

5

9

8

0.2 139

140

7

0.2 140 4.65

141 508

.21

25304

0.2 141 4.59

142 461

.3712

243

0.2 142

390

.2

195

0.2 143

144 432

.0

15

6

0.2 144 4.5

145 4.8
146

6

7

149

150 4.96
151

152

153

6

3.84

155 3.6
156 3.54
157

158

159

160 4.56
161

162

163 5
165

7

166

167

168

170

171

172 5.35

5.45

174

6

175

4

176

177

178

179

180

181 7
182

8

184 7
185 7.24
188

189

1

191

4

192 6.68
193

194

195 6.12
196

198

199

200 3.7
201 3.38
202

203

204

205 5.4
207

208

209

210

211 3.38
212 3.2
214

217

218

219

220

221

222 5.07
224 5.6
225

226

6

227

6

228

229

230

231

233 7.83
234

5

235

236

237

238

239

240 7.9
242

243

246

248 5.5
249

253

254 6.44
255

256

257

259 4.87
260

261 5
263 5.2
264 5.41
265 5.23
266

267

269 4.75
270

271 4.62
272

4.6

274

4.96

277 5.19
278 5.49
280

281 6.1
282

283 6.44
284 6.45
285

286 6.29

6.41

288

289

292

293

296

297

298

299

300

301

4

302

303

304

305

306

307 12
310

312

313 8.06

3

315

317

318

319

9

321

322

326

1

327 14.7
329

6

330

333

334

336

337

5

338

339

340

341

342

1

347

348

349 9.08
350

351 9
352 8.64
353 8.76
354 9
355 8.9
356

9.52

358

359

360

362

7

363

7

364

365

8.06

369 8.52
370

371

373 7.08
374

375 7.1
376

377 7.24

7.1

379 7.07
380

382

383

384

385

388

389 5.35
390 5.53
391

393 5.59
394

5.66

396

397

398 6.04
399 6.4
400 6.13

5.69

402

403 5.81
404 5.66
405 5.7
406 5.91
407 6.26
408 6.46
409 6.73
410 7.06

7.24

5

413 7.76

8.07

8.27

416 8.53
417

418

419

3

420

422 7.9
424

425

427 7.64
428

7.9

430 7.77
431 7.74
432

7.62

435

437 7.06
439

441 5.91
445

448

449 4.56

3.8

452 3.84
453 4.04
456

3.21

458

2.91

460 2.86
461 3.13
463 3

2.93

465 2.95

2.87

467

3.07

3.04

2.95

472 3.02
473 3.1
474 3.06

3.5

479 4.14
480 4.14
481

4.62

484 4.95
485

5.6

487

5.77

489

490 5.65
491 5.67
493

5.4

495 5.28
496 5.28
497

498 5.14
499 5
501 4.96

4.95

5.02

5.09

505

506

5.09

508 4.99
511 5.03
512

5.14

514

515 5.05
516

5.05

5.14

519 4.95

4.97

5.14

5.16

5.09

5.03

4.95

5

4.98

4.96

530 4.9

3.96

535

4.44

4.44

4.5

4.72

4.86

5.07

5.2

5.32

548

5.69

5.66

5.69

553 5.96

6.09

6

556 6.11
557

558 5.77
559 5.15
560 4.88

4.42

564

566 3.36
567

568

570 1.69

1.79

1.73

576 1.7
577

578 1.62
579

581

1.6

1.72

587

588

589

590

592 2.37

2.37

594 2.39
596 2.72
597 2.69
599 2.73

2.78

2.67

2.89

604

605 3.08
606 2.95
607 3.06

3.5

610 3.4

3.57

3.46

615 3.47
616 3.53
617

618 3.8

3.96

4.02

621

622 4.09

3.7

2.78

2.4

2.07

2.42

3.06

3.52

3.6

3.91

3.92

639

4.03

4.6

644 4.6

4.97

4.78

4.99

4.73

4.29

4.27

4.46

4.01

3.63

3.53

3.6

3.42

661 3.39

3.46

663

3.23

3.63

3.76

3.73

3.62

671 3.61
672 3.72

3.76

3.69

3.45

3.38

3.4

3.39

679 3.62

3.46

3.41

3.33

683 3.4

3.37

3.4

3.39

3.41

3.5

3.54

3.61

3.76

693

3.87

3.95

4.01

697 4.04
698 4
700 4.15
701 4.04

4.01

3.93

3.93

705 4.01

4.02

4.04

4.03

710 4.08
712 4.12

4.08

4.09

717

4.33

720

4.9

5.02

4.97

4.89

5

5.05

5.79

5.48

5.53

732 5.19

4.75

4.73

4.38

4.61

4.89

740 5.23

5.41

742 5.52

5.71

5.71

5.53

5.61

5.8

748

6.11

5.42

5.52

5.57

6.16

6.22

7.77

8.1

770

7.15

7.94

774

7.46

778

779 6.25

5.75

5.61

5.07

4.5

5.22

6.32

787 6.74

5.35

5.14

5.56

796

797 5.55

5.64

799

5.79

6.06

803 5.94

6.83

7

6.81

6.96

8.27

822 8.15

8.41

8

7.24

6.81

7.76

7.39

7.17

835

8.29

7.46

842 7.06

7.13

6.84

7.31

7.12

6.86

6.09

5.68

853 6.22

6.44

855

6.51

6.84

7.19

7.22

7.3

7.61

7.7

868 7.85

8.07

8.3

871

8.33

8.41

877 9.5

9.69

5

887

8

889

892

7

900

901

13.65

16

15.5

911

14.73

3

917

14

928

10.9

932 11.3
939

941

944

946

10.9

951 11.05

8.4

8.41

8.1

7.3

6.86

7.27

966

6.86

970 6.56

6.46

972

6.41

6.56

6.58

7.82

7.74

980

8.67

7.99

7.87

987 7.5

7.83

8.24

990

8.77

993

9.2

9.32

999 9.61

9.4

7.83

8.13

8.02

7.8

7.77

8.13

8.4

8.26

8.22

8.27

8.07

7.74

7.47

7.38

7.08

7.35

7.23

7.12

7.39

7.38

6.8

6.5

5.9

5.39

5.4

5.81

5.6

4.91

4.72

4.42

4.64

5.14

5.21

4.93

4.4

4.3

4.4

4.18

4.5

4.54

4.48

4.83

5.4

6.27

6.5

7.71

7.25

6.68

6.27

5.8

5.89

6.1

5.89

5.77

5.57

5.39

5.2

5.14

5.79

6.11

6.27

6.49

6.45

6.21

6.41

5.82

5.91

6.16

6.38

6.42

6.24

6

6.06

5.38

5.43

5.57

5.58

5.61

5.52

5.47

4.62

4.18

4.57

4.48

4.61

4.9

5.03

5.33

5.7

5.77

5.75

5.94

6.49

6.65

6.43

6.17

6.02

5.79

5.26

4.43

4.42

4.35

4.04

3.45

3.22

3.62

4.14

4.01

3.8

3.49

3.01

2.25

2.32

2.23

2.3

2.48

2.51

2.61

2.68

2.75

2.78

2.9

2.97

2.88

2.89

2.96

2.9

2.84

2.96

3.18

3.07

3

3.11

3.33

3.38

3.49

3.59

3.46

3.34

3.41

3.48

3.6

3.8

3.93

3.93

3.92

3.97

3.72

3.21

2.98

2.88

2.92

2.97

3.2

3.54

3.76

3.8

3.86

4.02

3.96

4.12

4.31

4.34

4.4

4.43

4.68

4.53

4.53

4.69

4.72

4.25

4.35

4.15

3.9

3.8

3.8

3.89

3.93

3.84

3.84

3.74

3.78

3.71

3.92

4.04

3.98

3.92

4.06

4.08

4.04

3.93

3.84

3.87

3.91

4.01

3.98

3.98

3.93

3.92

3.86

3.92

3.93

3.97

3.93

3.99

4.02

4

4.08

4.11

4.12

4.13

4.17

4.15

4.22

4.2

4.17

4.19

4.2

4.19

4.15

4.18

4.19

1292 4.21

4.21

4.2

4.21

4.21

4.2

4.25

4.29

4.35

4.45

4.62

4.61

4.83

4.87

4.75

4.78

5.02

5.22

5.18

5.01

5.16

4.58

4.54

4.59

4.85

5.02

5.16

5.28

5.3

5.48

5.75

5.7

5.53

5.56

5.74

5.64

5.72

5.5

5.42

5.46

5.58

5.7

6.03

6.04

6.3

6.17

6.32

6.69

7.16

7.1

7.14

7.65

7.79

7.24

7.07

7.39

7.84

7.46

7.39

6.84

6.39

6.24

6.11

5.7

5.83

6.39

6.73

6.58

6.14

5.93

5.81

5.93

6.08

6.07

6.19

6.13

6.11

6.11

6.21

6.55

6.48

6.28

6.36

6.46

6.9

7.13

7.4

7.09

6.79

6.73

6.74

6.99

6.96

7.54

7.81

8.04

7.9

7.43

7.5

7.39

7.73

8.23

8.06

7.86

8.06

8.4

8.43

8.05

8

7.74

7.79

7.73

7.56

7.9

7.86

7.83

7.77

7.41

7.29

7.21

7.39

7.46

7.46

7.33

7.4

7.58

7.69

7.96

8.03

8.04

8.15

8.35

8.64

8.41

8.64

9.1

9.1

9.18

9.25

8.91

8.95

9.33

10.3

10.8

11.1

12.84

14.1

15.15

12.34

10.55

10.4

10.85

11.85

11.57

11.5

11.38

11.51

10.85

9.78

8.7

7.3

7.71

7.8

7.3

7.17

7.45

7.43

7.25

7.11

7.08

7.25

7.25

8.02

8.61

8.4

8.76

9.42

9.52

8.67

8.21

8.37

8.72

9.09

9.06

9.26

8.98

8.8

8.96

9.11

9.09

9.18

8.86

8.02

1587 8.19

8.01

7.87

7.84

8.21

8.79

8.76

8.47

8.75

8.72

8.39

7.85

8.11

8.04

8.07

8.28

8.27

7.9

7.65

7.53

7.09

7.34

7.54

7.48

7.39

6.84

6.42

6.59

6.87

6.77

6.6

6.26

5.98

5.97

6.04

5.96

5.81

5.68

5.36

5.33

5.72

5.77

5.75

5.97

6.48

7.1

7.3

7.24

7.46

7.74

7.96

7.81

7.78

7.47

7.2

7.06

6.63

6.17

6.28

6.49

6.2

6.04

5.93

5.71

5.65

5.81

6.27

6.51

6.74

6.87

6.64

6.83

6.53

6.2

6.3

6.58

6.42

6.69

6.89

6.71

6.49

6.22

6.3

6.21

6.03

5.88

5.81

5.54

5.57

5.65

5.64

5.65

5.5

5.46

5.34

4.81

4.53

4.83

4.65

4.72

5

5.23

5.18

5.54

5.9

5.79

5.94

5.92

6.11

6.03

6.28

6.66

6.52

6.26

5.99

6.44

6.1

6.05

5.83

5.8

5.74

5.72

5.24

5.16

5.1

4.89

5.14

5.39

5.28

5.24

4.97

4.73

4.57

4.65

5.09

5.04

4.91

5.28

5.21

5.16

4.93

4.65

3.87

3.94

4.05

4.03

Period Airline Sales Airline

F Alpha Interest Rates
11 0.2 0.

7
11

8 12 0.

9
3 13 11

3.2 1.01
4 1

29 11

6 96 0.

98
5 1

21 1

19 36 0.

93
1

35 119 69 44 1.

15
14 1

22 55 52 1.22
48 1

27 80 16 1.

17
136 1

31 43 53 28 1.28
10 13

2.6 74 26 24 1.

59
104 129 39 60 92 1.

45
1

18 124 51 88 79 1.

41
115 1

23 40 110 34 1.6
116 121 72 20 82 1.9
141 120 57 67 62 2.07
135 12

4.6 61 73 49 2.23
1

25 126 292 58 1

99 2.24
149 126.

38 340 71 359 2.

54
1

70 1

30 90 257 87 2.4
170 138 253 56 2.

32
158 144 980 304 453 2.25
1

33 1

47 42 356
114 144.

66 94 50 2.61
140 13

8.53 91 588 2.49
145 13

8.8 271 270 2.3
150 140.0

617 1

63
1

78 142 493 64 307 2.8
163 149.

239 194 2.9
172 151 159 355 2.99
178 155 993 274 84 3.21
199 160 46 198 75 3.1
1

68 156 95 900
184 174 255 204 3.08
162 1

76 234 37 3.07
146 17

3.38 236 301 3.06
166 167 97 89 408 3.29
171 16

7.5 278 312 327 3.16
180 168 222 264 86 3.37
193 170.5

77 81 889 3.5
181 175 622 495 911 3.58
1

83 176 249 799 672 3.31
218 177 599 397 383 3.04
230 1

85 679 179 2.44
242 19

4.5 389 432 1.53
209 20

4.03 117 946 1.3
191 205 280 435 1.13
202 224 548 0.91
196 779 388 0.83
195 238 107
19

5.7 390 448 1.69
19

5.8 351 259
235 203 868 100 671 2.63
229 210 480 137 2.67
243 21

3.8 558 449 2.7
219 700 467 592 2.82
272 228 560 374 742
237 23

7.2 299 594
211 23

7.1 639 407 2.95
231 589 152 2.84
201 221 567 1292 208
217 370 337
188 214 296 701
20

9.4 103 161 4.04
227 214.5

282 128 4.05
65 217.0

226 369 4.15
220 418 109 225 4.4
302 229.

134 487 618 4.3
293 24

3.7 590 944 3.9
253.

566 207
25

4.65 285 604 3.23
24

9.5 286 283
240 289 2.46
23

7.9 263 122
233 23

8.7 410 497
267 23

7.62 352 398 2.48
269 243.

498 822 185
248 990 581 748 2.37
315 25

2.87 465 399
364 265 303 972 319
347 285.0

427 778 2.42
297 417 284 2.39
300 339 382 2.29
29

5.07 787 506
28

3.4 720 2.33
282.3

698 377
277 28

2.69 587 112
317 281 556 616 2.28
313 288 535 693
318 293.

516 855 481
298 413 385
31

3.53 422 508 2.72
405 333 424 338 200 2.73
34

7.7 394 705 605
306 349 157 484
340.

553 261 1587
326 260 892
322 514 871 416 2.92
321 697 133
317.00

901 577 2.78
348 32

4.8 212 165 2.74
101 329 445 770 932 2.83
102 334 661 607
352.0

452 928 596 2.91
374.6

362 342 877
105 404 393 108 987 430 2.89
106 39

5.2 189 441
305 38

5.6 519 2.93
336 369.50

380 564
362.

803 125 3.18
358 330 3.32
111 350 939 400
352.55

515 712 3.45
113 363 351.

644 256 966 3.52
353 153 557
491 370.

132 458
505 394.30

579
41

6.4 463 853 3.54
118 41

3.95 570 710 3.47
310 402 456 568 3.48
384 371 254
360 37

4.89 732 3.46
371.

917 576
123 406 365 428 610
396 373 474 842 3.57
420 37

8.3 431 3.6
472 38

6.6 354 485 3.84
127 403 490 835 887 3.81
559 432.599

266 3.93
45

7.8 941 496
130 45

8.9 530 797
131 44

8.52 246 379 3.89
431.2

182 597
425 460 683
391 424.1

796 621
419 417.5

437 489 717 3.92
461 41

7.83 499 774
42

6.46 999 341 4.09
43

5.5 439 473 4.38
139 45

5.4 951 578 4.59
606 48

8.76 615 663
512 409
511 740 4.62
143 501 970 192 4.64
479 376 375
4.9
147 5.3
148 5.35
5.32
4.72
4.56
4.2
154
4.21
4.27
4.42
4.73
4.97
164 4.98
5.1
5.38
5.66
5.52
169 5.31
5.09
5.19
173
5.9
6.1
6.12
6.02
6.11
6.04
6.44
6.9
183 7.09
186 7.82
187 7.87
7.13
6.63
190 6.5
6.8
6.45
6.41
5.91
197 5.28
4.87
4.44
3.86
4.14
4.75
206 4.94
4.69
4.46
4.22
4.01
213 3.73
3.71
215 3.69
216 3.91
3.98
4.02
4.66
4.74
4.78
223 5.41
6.09
6.2
6.3
7.19
8.01
8.67
8.29
232 7.22
7.4
7.77
7.12
7.96
8.33
8.23
241 7.55
8.96
8.06
244 7.46
245 7.47
7.15
247 6.26
5.49
250 5.61
251 5.23
252 5.34
6.13
6.42
5.96
5.48
258 5.44
4.88
262 4.86
5.14
5.08
268 4.92
4.35
4.67
273
4.54
275
276 5.02
279 5.81
6.16
6.07
6.29
287
6.73
7.01
290 7.08
291 7.85
7.99
8.64
294 9.08
295 9.35
9.32
9.48
9.46
9.61
9.06
9.2
9.52
10.26
1

1.7
1

1.79
12.04
308 1

2.86
309 15.2
13.2
311 8.58
7.07
314 9.1
10.27
316 1

1.62
13.73
15.49
15.02
320 14.7
1

3.36
13.69
323 16.3
324 14.73
325 1

4.95
15.5
328 13.54
10.8
10.85
331 12.28
332 13.48
1

2.68
12.7
335 12.09
12.47
11.3
8.68
7.92
7.71
8.07
7.94
343 7.86
344 8.1
345 8.35
346 8.21
8.19
8.79
9.34
9.09
357
9.69
9.83
9.87
361 10.12
10.4
10.3
9.74
8.61
366
367 7.76
368 8.27
7.95
7.48
372 6.95
7.14
7.16
378
7.06
381 6.56
6.06
6.15
6.21
5.83
386 5.53
387 5.21
5.18
5.43
392 5.59
5.64
395
5.67
5.69
401
5.77
411
412 7.3
414
415
8.82
8.65
8.4
8.15
421 7.88
423 7.75
7.64
7.69
426 7.63
7.74
429
7.73
433
434 7.45
7.36
436 7.17
438 6.74
6.22
440 5.94
442 5.65
443 5.46
444 5.57
5.58
446 5.33
447 5.22
4.99
450 4.07
451
454 3.75
455 3.63
3.66
457
3.13
459
462 3.22
464
466
2.96
468
469
470 3.02
471
475 2.98
476 3.25
477
478 3.68
4.33
482 4.48
483
5.29
486
5.71
488
5.73
492 5.47
5.42
494
5.36
500 4.83
502
503
504
5.15
5.05
507
509 5.03
510 4.91
5.01
513
5.16
4.93
517
518
520
521
522
523 5.04
524
525
526
527
528
529
531 4.61
532
533 4.41
534 4.39
4.34
536
537
538 4.29
539
540 4.57
541 4.55
542
543 4.68
544
545
546
547
5.55
549
550
551 5.79
552
554
555
6.17
561
562 3.87
563 3.62
3.49
565 3.51
2.64
2.16
569 1.87
571 1.65
572 1.73
573
574 1.72
575
1.68
1.63
580 1.58
1.23
582 1.19
583 1.47
584 1.49
585
586
1.75
1.81
1.99
2.12
591 2.26
593
595 2.51
598 2.62
600 2.88
601
602
603
3.19
608 3.39
609
611
612 3.76
613
614 3.42
3.61
619
620
4.06
623
624 3.11
625
626 2.58
627
628 2.15
629
630 2.08
631
632
633
634 3.67
635
636 3.72
637
638
3.97
640
641 4.25
642 4.52
643
645
646
647 4.85
648 5.12
649
650
651
652
653
654
655
656 3.41
657 3.43
658
659
660
662
3.35
664 3.33
665
666
667 3.59
668
669
670
673
674
675
676
677
678
680
681
682
684
685
686
687
688
689
690
691
692 3.77
3.82
694
695
696
699 4.12
702
703
704
706
707
708 4.08
709
711 4.13
713 4.11
714
715
716 4.16
4.24
718
719 4.45
4.79
721
722
723
724
725
726
727 5.26
728 5.68
729
730
731
733
734
735 4.47
736
737
738
739 5.06
741
743
744
745
746
747
5.75
749
750 5.82
751 5.54
752
753 5.39
754
755
756
757
758 6.32
759 6.38
760 6.25
761 6.51
762 6.83
763 7.31
764 7.29
765
766 7.57
767 7.65
768
769 8.24
7.79
771
772 7.39
773
7.84
775 7.56
776
777 7.11
6.96
780
781
782
783
784
785 5.97
786
788 6.35
789 5.89
790 5.56
791
792 5.27
793
794 5.25
795
5.88
798
5.78
800
801
802 6.05
804 6.01
805 6.27
806 6.58
807 6.86
808 6.78
809
810 6.84
811 7.54
812 7.89
813 7.25
814 6.81
815
816
817
818 6.76
819 7.35
820 8.05
821
823 8.41
824 8.66
825
826
827 7.61
828
829 7.23
830 6.65
831
832
833
834
7.72
836 8.16
837
838 7.81
839
840 7.43
841 6.99
843
844
845 7.27
846
847
848
849 6.66
850 6.24
851
852
854
6.47
856 6.31
857 6.55
858 6.39
859
860 6.79
861
862
863
864
865
866 7.67
867
869
870
8.54
872
873
874 8.62
875 9.04
876 9.33
878 9.29
879 9.38
880 9.43
881 9.42
882 8.95
883 8.94
884 9.14
885
886 10.9
11.1
888 10.71
10.88
890 12.84
891 14.05
12.02
893 9.44
894 8.91
895 9.27
896 10.63
897 11.5
898 12.01
899 13.31
13.65
1

3.01
902
903 13.51
904 14.09
905 15.08
906 14.29
907 15.15
908
909 16.22
910
13.11
912 13.66
913 14.64
914
915 14.1
916 1

4.18
13.77
918 14.48
919
920 12.62
921 12.03
922 10.62
923 9.98
924 9.88
925 9.64
926 9.91
927 9.84
9.76
929 9.66
930 10.32
931
933 11.07
934 10.87
935 10.96
936 11.13
937 10.93
938 11.05
11.59
940 11.98
1

2.75
942 13.18
943 13.08
12.5
945 12.34
11.85
947
948 10.56
949 10.43
950 10.55
952 10.49
953 9.75
954 9.05
955 9.18
956 9.31
957 9.37
958 9.25
959 8.88
960
961
962
963
964
965
7.41
967
968 6.49
969 6.62
971
6.43
973
974
975
976 7.32
977 8.02
978
979
8.03
981
982 8.75
983
984 8.13
985
986 7.38
988
989
8.22
991 8.44
992
8.57
994 8.43
995 8.72
996 9.11
997
998
1000
1001 8.98
1002 8.37
1003
1004
1005 8.26
1006
1007
1008
1009
1010 8.39
1011 8.63
1012 8.78
1013 8.69
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030 6.23
1031
1032
1033
1034 5.72
1035 6.18
1036 5.93
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046 4.58
1047
1048
1049
1050 4.53
1051 4.43
1052 4.36
1053 4.17
1054
1055
1056
1057
1058
1059
1060 5.99
1061 6.34
1062
1063 6.48
1064
1065 6.69
1066 7.04
1067 7.44
1068
1069 7.66
1070
1071 6.89
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090 6.08
1091
1092
1093
1094 6.03
1095
1096 6.61
1097
1098
1099
1100
1101 5.98
1102 5.84
1103 5.76
1104 5.74
1105
1106
1107
1108
1109
1110
1111
1112 5.24
1113
1114
1115
1116
1117
1118
1119 5.11
1120
1121
1122
1123 5.62
1124
1125
1126
1127 5.92
1128 6.14
1129
1130
1131 6.53
1132 6.36
1133 6.77
1134
1135 6.28
1136
1137
1138 5.85
1139
1140
1141 4.77
1142 4.71
1143
1144
1145 4.51
1146
1147 4.31
1148
1149
1150 3.14
1151
1152
1153 3.56
1154 3.55
1155
1156
1157
1158
1159
1160 2.52
1161 2.32
1162
1163
1164
1165
1166 2.36
1167 2.38
1168 2.43
1169
1170
1171
1172 2.65
1173
1174
1175 2.76
1176
1177
1178 2.97
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192 3.34
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207 3.09
1208 3.05
1209
1210
1211
1212
1213
1214
1215
1216
1217 3.74
1218
1219
1220
1221 3.99
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232 4.49
1233
1234 4.28
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244 3.78
1245
1246
1247
1248 3.88
1249
1250
1251
1252
1253 3.94
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267 3.83
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282 4.23
1283
1284
1285 4.19
1286
1287
1288
1289
1290
1291
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308 4.81
1309
1310
1311
1312
1313
1314 4.84
1315
1316 4.63
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331 5.87
1332
1333
1334
1335
1336
1337
1338
1339
1340 6.19
1341
1342
1343
1344 6.57
1345 6.72
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355 7.91
1356
1357
1358 7.53
1359
1360 7.33
1361
1362
1363
1364
1365
1366
1367
1368 6.52
1369
1370
1371
1372
1373
1374
1375 5.95
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388 6.64
1389 6.71
1390 6.67
1391 6.85
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401 7.21
1402 7.51
1403 7.58
1404
1405
1406 8.04
1407
1408
1409 7.68
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420 8.14
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431 7.59
1432
1433
1434 6.87
1435
1436
1437
1438 7.37
1439
1440 7.28
1441
1442
1443 7.34
1444 7.52
1445
1446
1447
1448
1449
1450
1451
1452 8.46
1453
1454
1455 8.42
1456
1457 8.81
1458 9.01
1459
1460
1461 9.12
1462
1463
1464
1465
1466 9.03
1467
1468
1469 10.65
1470 10.39
1471
1472 12.41
1473 12.75
1474 11.47
1475 10.18
1476 9.78
1477 10.25
1478
1479 11.51
1480 11.75
1481 12.68
1482
1483 12.57
1484 13.19
1485 13.12
1486 13.68
1487
1488 13.47
1489 14.28
1490 14.94
1491 15.32
1492
1493 13.39
1494 13.72
1495 14.59
1496 14.43
1497 13.86
1498 13.87
1499 13.62
1500 14.3
1501 13.95
1502 13.06
1503
1504 10.91
1505
1506 10.54
1507 10.46
1508 10.72
1509 10.51
1510
1511 10.38
1512
1513 11.38
1514
1515 11.65
1516 11.54
1517 11.69
1518 11.83
1519 11.67
1520 11.84
1521 12.32
1522 12.63
1523 13.41
1524 13.56
1525 13.36
1526 12.72
1527 12.52
1528 12.16
1529
1530
1531
1532
1533 11.86
1534 11.43
1535
1536 10.16
1537 10.31
1538 10.33
1539 10.37
1540 10.24
1541
1542 9.26
1543 9.19
1544
1545 7.78
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561 8.45
1562
1563
1564
1565 8.86
1566 8.99
1567
1568
1569
1570
1571
1572 8.92
1573
1574
1575
1576
1577
1578
1579
1580 9.17
1581 9.36
1582
1583
1584 8.28
1585
1586 8.11
1588
1589
1590
1591
1592 8.47
1593 8.59
1594
1595
1596 8.48
1597
1598
1599 8.89
1600
1601
1602 8.08
1603 8.09
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613 7.42
1614
1615 7.03
1616
1617
1618
1619
1620 7.26
1621
1622 6.59
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642 6.97
1643 7.18
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668 6.91
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742 4.26
1743
1744
1745
1746

&C&A
&CPage &P

Sheet1

Month
Airline Sales
Airline Sales/Fcst vs Time (Months)

Sheet2

Time (Months)
Interest Rate (%)
US Interest Rates vs. Time

Statistics

144

F

Regression 1

1759935.3217999

142

143

Standard Error

72.1572204126 102.6685371631

3.6660430975003E-61

2.4769884434 2.842081567

SUMMARY OUTPUT
Regression
Multiple R 0.9240281154
R Square 0.8538279581
Adjusted R Square 0.8527985775
Standard Error 46.0628868742
Observations
ANOVA
df SS MS Significance F
1759935.3217999 829.4580035686 3.6660430975003E-61
Residual 301294.115700105 2121.7895471838
Total 2061229.4375
Coefficients t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 87.4128787879 7.7173075344 11.3268621729 1.36527204108949E-21 72.1572204126 102.6685371631
X Variable 1 2.6595350052 0.0923439633 28.8003125603 2.4769884434 2.842081567

IST 230 Exercise on Forecasting Recurrences

Use Excel or OpenOffice to forecast the Airline Sales and US Interest Rate data in the data spreadsheet (data.xls or data.ods). You’ll see that I started this for you for the airline data. There’s also a tutorial in the exercise directory which you may find helpful.

  1. Smooth the data using exponential smoothing. If you think the time series does not have a long-term trend up or down, use simple exponential smoothing. If you think the time series does have a long-term trend up or down, use trend-adjusted exponential smoothing for each of these time series. Note that this requires that you first do the simple exponential smoothing, and then compute the trend as the smoothed difference between successive forecasts. Finally, compute the trend-adjusted forecast as the sum of these two. Your objective should be to get a fairly smooth (hence the term “smoothing”) curve that follows the trend and runs as closely as possible through the middle of the data. This will usually give an RMS error as small as possible without following the cycles.

  1. Add some type of cyclical adjustment. My usual approach is to compute a ratio the actual data and the exponentially smoothed forecast – a so-called “cyclical index” (or if it follows a calendar-year pattern, it’s called a “seasonal index”.) You’ll find additional info in the tutorial.

  1. For both time series (airline-sales and interest-rates), forecast 12 periods ahead (h=12), starting from the beginning of your data, and extrapolate your forecast 12 periods past where you have actual data, based on your latest trend estimate and your cyclical index. Note you won’t be able to assess the forecast for these, since you don’t have actual data.

Use the exponential smoothing formulae given below.

Compute the mean-squared error by summing the squared differences between the forecast values and the actual values.

Your deliverable a one or two page executive summary of your results in a PDF document entitled exercise8-flastname , where flastname is your first initial and last name (e.g., for me, dmudgett). In your summary, present

– A brief one-sentence statement of your problem plus an explanation of how you
selected alpha, beta, and figured out the cyclical pattern. (1 paragraph)

– Graphs of your forecast and actual data for your final choices of alpha and beta
(should be just 2 graphs)

– A table of RMS forecast error for at least 3 choices of alpha and beta, for each time
series.

Here are the exponential smoothing formulae (carefully read the explanation of n-periods ahead forecasting).

Simple Exponential Smoothing:

The simple exponential smoothing forecast is given by:

F(t+1) = F(t) + alpha*(A(t) – F(t)) = (1-alpha)*F(t) + alpha*A(t) (1)

where

F(t+1) = the one-period-ahead forecast for period t+1

F(t) = the forecast for period t

A(t) = the actual value in period t

alpha is known as the smoothing constant, a constant in the range (0,1)

Trend-Adjusted Exponential Smoothing:

The trend-adjusted exponentially smoothed forecast is given by:

FT(t+1) = F(t+1) + T(t) (2)

where F(t+1) = the one-period-ahead exponentially smoothed forecast for period t+1

T(t) = the trend correction in period t, which is given by:

T(t) = beta*(F(t)-F(t-1)) + (1-beta)*T(t-1) (3)

and beta is the smoothing constant for the trend estimation, also a constant in the range (0,1).

NOTE: Equation (2) is *not* a recurrence. Compute the recurrences (1) and (3) first, then use equation (2).

You can think of beta exactly the same way as you think about alpha for simple exponential smoothing. In fact, it’s probably a good idea to set beta = alpha, unless you have a reason to think it should be different.

Comment: alpha and beta are usually determined by experimentation, to see what works best on the time-series you’re forecasting. To give you some idea what the affect is, think about it this way:

alpha/beta equivalent n-period moving average

0.1 about 12 periods

0.2 about 6 periods

0.3 about 4 periods

0.5 about 3 periods

0.7 about 2 periods

These are just rough equivalences, but give you an idea how fast the smoother reacts to a major change in the data pattern.

Final point: Extrapolating the smoothed forecast more than one time-period ahead.

For simple exponential smoothing, forecasting more than one period ahead is no big deal. Just use the h-period-ahead formula (h is called the forecasting horizon):

F(t+h) = F(t+1) = (1-alpha)*F(t) + alpha*A(t) (4)

You also compute the trend exactly as before – use equation (3) completely unmodified. But equation (2) may change, depending on how many periods you want to extrapolate the trend. For example, if you want to forecast h-periods ahead and also extrapolate the trend h periods ahead, then change equation (2) to

FT(t+h) = F(t+h) + h*T(t) (5)

As a practical matter, a forecaster may not want to extrapolate the trend all the way through the forecast horizon. Let’s say, for example that you want to forecast 6 periods ahead, and aren’t sure the trend will continue all 6 periods. Let’s say a retailer wants to use a forecast to decide how much of a product they needed 6 months down the line. If they extrapolate the trend all 6 months and it doesn’t happen, they’ll wind up with too much stock. In this case it may make sense to be more conservative and extrapolate the trend *less then* the total number of periods in the forecast horizon.

Either way – once you decide how many periods you want to extrapolate the forecast – call that integer m – then the trend-adjusted forecast is given by this slightly modified equation 5:

FT(t+k) = F(t+k) + min(k,m)*T(t) (6)

Order a unique copy of this paper

600 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
Top Academic Writers Ready to Help
with Your Research Proposal

Order your essay today and save 25% with the discount code GREEN