Data Analysis

Make a word document of two pages of the Explorative data analysis given in document

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 1/16

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

location date variant

num_sequences perc_sequences num_sequences_total

0 Angola 2020-07-06 Alpha 0 0.0 3

1 Angola 2020-07-06 B.1.1.277 0 0.0 3

2 Angola 2020-07-06 B.1.1.302 0 0.0 3

3 Angola 2020-07-06 B.1.1.519 0 0.0 3

4 Angola 2020-07-06 B.1.160 0 0.0 3


RangeIndex: 100416 entries, 0 to 100415
Data columns (total 6 columns):
# Column Non-Null Count Dtype
— —— ————– —–
0 location 100416 non-null object
1 date 100416 non-null datetime64[ns]
2 variant 100416 non-null object
3 num_sequences 100416 non-null int64
4 perc_sequences 100416 non-null float64
5 num_sequences_total 100416 non-null int64
dtypes: datetime64[ns](1), float64(1), int64(2), object(2)
memory usage: 4.6+ MB

Alpha 4184
B.1.1.277 4184
others 4184
S:677P.Pelican 4184
S:677H.Robin1 4184
Omicron 4184
Mu 4184

In [1]: import numpy as np
import pandas as pd

In [2]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

In [3]: from sklearn.linear_model import LinearRegression

In [4]: df = pd.read_csv(‘covid-variants.csv’,
parse_dates=[“date”])
df.head()

Out[4]:

In [5]: df.info()

In [6]: df.variant.value_counts()

Out[6]:

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 2/16

Lambda 4184
Kappa 4184
Iota 4184
Gamma 4184
Eta 4184
Epsilon 4184
Delta 4184
Beta 4184
B.1.620 4184
B.1.367 4184
B.1.258 4184
B.1.221 4184
B.1.177 4184
B.1.160 4184
B.1.1.519 4184
B.1.1.302 4184
non_who 4184
Name: variant, dtype: int64

0 84173
1 2753
2 1405
3 905
4 631

1690 1
1719 1
2156 1
1184 1
862 1
Name: num_sequences, Length: 1563, dtype: int64

num_sequences perc_sequences num_sequences_total

count 100416.000000 100416.000000 100416.000000

mean 72.171676 6.154355 1509.582457

std 1669.262169 21.898989 8445.291772

min 0.000000 -0.010000 1.000000

25% 0.000000 0.000000 12.000000

50% 0.000000 0.000000 59.000000

75% 0.000000 0.000000 394.000000

max 142280.000000 100.000000 146170.000000

In [7]: df.num_sequences.value_counts()

Out[7]:

In [8]: df.describe()

Out[8]:

In [9]: plt.figure(figsize=(22,8))
sns.scatterplot(x=”date”, y=”num_sequences”, data=df, hue=”variant”)

Out[9]:

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 3/16

array([‘Angola’, ‘Argentina’, ‘Aruba’, ‘Australia’, ‘Austria’, ‘Bahrain’,
‘Bangladesh’, ‘Belgium’, ‘Belize’, ‘Benin’,
‘Bosnia and Herzegovina’, ‘Botswana’, ‘Brazil’, ‘Brunei’,
‘Bulgaria’, ‘Cambodia’, ‘Cameroon’, ‘Canada’, ‘Chile’, ‘Colombia’,
‘Costa Rica’, ‘Croatia’, ‘Curacao’, ‘Cyprus’, ‘Czechia’, ‘Denmark’,
‘Djibouti’, ‘Dominican Republic’, ‘Ecuador’, ‘Egypt’, ‘Estonia’,
‘Ethiopia’, ‘Fiji’, ‘Finland’, ‘France’, ‘Gambia’, ‘Georgia’,
‘Germany’, ‘Ghana’, ‘Greece’, ‘Guatemala’, ‘Hong Kong’, ‘Hungary’,
‘Iceland’, ‘India’, ‘Indonesia’, ‘Iran’, ‘Iraq’, ‘Ireland’,
‘Israel’, ‘Italy’, ‘Jamaica’, ‘Japan’, ‘Jordan’, ‘Kazakhstan’,
‘Kenya’, ‘Kosovo’, ‘Kuwait’, ‘Latvia’, ‘Lebanon’, ‘Liechtenstein’,
‘Lithuania’, ‘Luxembourg’, ‘Madagascar’, ‘Malawi’, ‘Malaysia’,
‘Maldives’, ‘Malta’, ‘Mauritius’, ‘Mexico’, ‘Moldova’, ‘Monaco’,
‘Mongolia’, ‘Montenegro’, ‘Morocco’, ‘Mozambique’, ‘Nepal’,
‘Netherlands’, ‘New Zealand’, ‘Nigeria’, ‘North Macedonia’,
‘Norway’, ‘Oman’, ‘Pakistan’, ‘Papua New Guinea’, ‘Paraguay’,
‘Peru’, ‘Philippines’, ‘Poland’, ‘Portugal’, ‘Qatar’, ‘Romania’,
‘Russia’, ‘Rwanda’, ‘Senegal’, ‘Serbia’, ‘Seychelles’, ‘Singapore’,
‘Sint Maarten (Dutch part)’, ‘Slovakia’, ‘Slovenia’,
‘South Africa’, ‘South Korea’, ‘Spain’, ‘Sri Lanka’, ‘Suriname’,
‘Sweden’, ‘Switzerland’, ‘Thailand’, ‘Togo’, ‘Trinidad and Tobago’,
‘Turkey’, ‘Uganda’, ‘Ukraine’, ‘United Arab Emirates’,
‘United Kingdom’, ‘United States’, ‘Uruguay’, ‘Vietnam’, ‘Zambia’,
‘Zimbabwe’], dtype=object)

array([‘Alpha’, ‘B.1.1.277’, ‘B.1.1.302’, ‘B.1.1.519’, ‘B.1.160’,
‘B.1.177’, ‘B.1.221’, ‘B.1.258’, ‘B.1.367’, ‘B.1.620’, ‘Beta’,
‘Delta’, ‘Epsilon’, ‘Eta’, ‘Gamma’, ‘Iota’, ‘Kappa’, ‘Lambda’,
‘Mu’, ‘Omicron’, ‘S:677H.Robin1’, ‘S:677P.Pelican’, ‘others’,
‘non_who’], dtype=object)

In [10]: df.location.unique()

Out[10]:

In [11]: df.variant.unique()

Out[11]:

In [12]: for virus in df.variant.unique():
most_cases = df.loc[df[‘variant’] == virus].groupby(‘location’)[‘num_sequences’].ag
most_cases = pd.DataFrame({‘Location’:most_cases.index, ‘Number of Case’:most_cases
plt.figure(figsize=(20,8))
sns.barplot(y=’Location’,x=”Number of Case”,data=most_cases,palette=”plasma_r”)
plt.title(‘COUNTRIES HAVE MORE {} CASES THAN OTHERS’.format(virus).upper(),loc=’cen

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 4/16

C:\Users\shahk\AppData\Local\Temp/ipykernel_4392/2010383229.py:4: RuntimeWarning: More t
han 20 figures have been opened. Figures created through the pyplot interface (`matplotl
ib.pyplot.figure`) are retained until explicitly closed and may consume too much memory.
(To control this warning, see the rcParam `figure.max_open_warning`).
plt.figure(figsize=(20,8))

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 5/16

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 6/16

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 7/16

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 8/16

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 9/16

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 10/16

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 11/16

location variant num_sequences perc_sequences num_sequences_total month year day

In [13]: df[‘month’] = df[‘date’].apply(lambda date: date.month)
df[‘year’] = df[‘date’].apply(lambda date: date.year)
df[‘day’] = df[‘date’].apply(lambda date: date.day)

In [14]: df.drop(‘date’,axis=1, inplace=True)
df.head()

Out[14]:

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 12/16

location variant num_sequences perc_sequences num_sequences_total month year day

0 Angola Alpha 0 0.0 3 7 2020 6

1 Angola B.1.1.277 0 0.0 3 7 2020 6

2 Angola B.1.1.302 0 0.0 3 7 2020 6

3 Angola B.1.1.519 0 0.0 3 7 2020 6

4 Angola B.1.160 0 0.0 3 7 2020 6

In [15]: df_val1 = df.loc[df[“variant”]== virus].groupby(‘month’)[‘num_sequences’].agg(‘sum’).so
df_val1 = pd.DataFrame({‘Month’:df_val1.index, ‘Number of Cases’:df_val1.values})

In [16]: plt.figure(figsize=(14,8))
sns.barplot(x=’Month’, y=’Number of Cases’,data=df_val1);
plt.title(‘Monthly Cases Ratio Of All Summed Variant’,fontweight=”bold”);

In [17]: df_val1 = df.loc[df[“variant”]== virus].groupby(‘day’)[‘num_sequences’].agg(‘sum’).sort_
df_val1 = pd.DataFrame({‘Day’:df_val1.index, ‘Number of Cases’:df_val1.values})

plt.figure(figsize=(14,8))
sns.barplot(x=’Day’, y=’Number of Cases’,data=df_val1);
plt.title(‘Daily Cases Ratio Of All Summed Variant’,fontweight=”bold”);

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 13/16

In [18]: df_val1 = df.loc[df[“variant”]== virus].groupby(‘year’)[‘num_sequences’].agg(‘sum’).sor
df_val1 = pd.DataFrame({‘Year’:df_val1.index, ‘Number of Cases’:df_val1.values})

plt.figure(figsize=(14,8))
sns.barplot(x=’Year’, y=’Number of Cases’,data=df_val1);
plt.title(‘Over All Cases Ratio With Year Of All Variant’,fontweight=”bold”);

In [19]: df_val1 = df.loc[df[“variant”]== ‘Omicron’].groupby(‘month’)[‘num_sequences’].agg(‘sum’
df_val1 = pd.DataFrame({‘Month’:df_val1.index, ‘Number of Cases’:df_val1.values})

plt.figure(figsize=(14,8))

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 14/16

sns.barplot(x=’Month’, y=’Number of Cases’,data=df_val1);
plt.title(‘Omicron Cases Montly Ratio’,fontweight=”bold”);

In [20]: df_val1 = df.loc[df[“variant”]== ‘Omicron’].groupby(‘day’)[‘num_sequences’].agg(‘sum’).
df_val1 = pd.DataFrame({‘Day’:df_val1.index, ‘Number of Cases’:df_val1.values})

plt.figure(figsize=(14,8))
sns.barplot(x=’Day’, y=’Number of Cases’,data=df_val1);
plt.title(‘Omicron Cases Daily Ratio’,fontweight=”bold”);

In [21]: df_val1 = df.loc[df[“variant”]== ‘Omicron’].groupby(‘year’)[‘num_sequences’].agg(‘sum’)

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 15/16

df_val1 = pd.DataFrame({‘Year’:df_val1.index, ‘Number of Cases’:df_val1.values})

plt.figure(figsize=(14,8))
sns.barplot(x=’Year’, y=’Number of Cases’,data=df_val1);
plt.title(‘Omicron Cases Yearly Ratio’,fontweight=”bold”);

In [22]: df_val1 = df.loc[df[“variant”]== ‘Omicron’].groupby(‘location’)[‘num_sequences’].agg(‘s
df_val1 = pd.DataFrame({‘Location’:df_val1.index, ‘Number of Cases’:df_val1.values})

plt.figure(figsize=(16,8))
sns.barplot(x=’Location’, y=’Number of Cases’,data=df_val1);
plt.title(‘Highest Omicron Cases Location’,fontweight=”bold”);
plt.xticks(rotation=30);

2/2/22, 7:33 PM EDA 2 covid-variants

localhost:8888/nbconvert/html/Downloads/EDA 2 covid-variants.ipynb?download=false 16/16

In [ ]:

Order a unique copy of this paper

600 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
Top Academic Writers Ready to Help
with Your Research Proposal

Order your essay today and save 25% with the discount code GREEN