Geometry HW – 27 Circle questions – NEED in 8 hours or less

PLease show all work

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

CIRCLESUNIT PRACTICE PROBLEMS

Y

X

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

C

D

O

B

A

YX
C
D
O
B
A
C

O
A

B

1. OX OY .
OX = 15

5 5XB x 
7 5CD x 

a. Solve for x.

b. Find AB.
c. Find the length of the radius

2. 24AB CD  .

The radius of circle O is 15.
2 7OX a  .

a. Find OY.
b. Solve for a .

3. 8OA 
 100m AB  

4 4m BOC x  

a. Solve for x.

b. Find the length of AB
c. Find the area of sector AOB

CIRCLES UNIT PRACTICE PROBLEMS

O
A
B
C
D

C
OA

B
4. AB = 6

BC = 8.
a. Find the length of the radius
b. Find the area of the semicircle

5. The radius of a circle is 50. The distance from
the center of the circle to a chord on the circle
is 14.

a. Draw a diagram to represent this
information.

b. Find the length of the chord.

6. The length of a chord is 10. The distance from
the center of the circle to a chord on the circle
is 12.

a. Draw a diagram to represent this
information.

b. Find the length of the radius.

7. 80m B   .
 145m AD  
 58m AB  

a. Find mCD .
b. Find m D .
c. Find mBC

CIRCLES UNIT PRACTICE PROBLEMS

8. The distance between the centers of two circles
is 39. The radius of one circle is 30. The
radius of the other circle is 15. The two circles
have a common external tangent.

Find the length of the common external tangent.

9. The radius of one circle is 12. The radius of

the other circle is 3. The length of their
common external tangent is 12.

Find the distance between the centers of the circles.

10. The distance between the centers of two circles
is 30. The radius of one circle is 9. The radius
of the other circle is 15. The two circles have a
common internal tangent.

Find the length of the common internal tangent.

CIRCLES UNIT PRACTICE PROBLEMS

K L

AW

O

N

E

C

S

T

N
E
C
S
T

11. WK = 11, WA = 9, and AL = 10. Find KL.

12. 20m SCT  
23m ETN  

a. Find mEN
b. Find mST
c. Find m TES

13. SE = 2
TN = 11
NC = 5

Find EC.

CIRCLES UNIT PRACTICE PROBLEMS

62

70

x

125

K

F

G

30

40

x

14. Solve for x :

15. Solve for x:

16. Find m K :

17. Find x :

40

62

143

164 112

x

210

x
x

CIRCLES UNIT PRACTICE PROBLEMS

BE

D
C

A F

BE
D
C
A F

18. Find x :

19. AB = 5

BC = 4
Find CD

20. ( 2)AE x 
5EB 

8ED x 
2EF 

a. Solve for x.
b. Find AB.
c. Find DF.

24

x

CIRCLES UNIT PRACTICE PROBLEMS

E
O
A
B
C
D

21. A circle with a radius of 13 is circumscribed
about a rectangle ABCD. AB = 24.

a. Draw the circle and rectangle.
b. Find BC.

22. 2AE x 
2 1EB x 

CE x
4ED x 

a. Solve for x.
b. Find AB.
c. Find CD.

23. AB CD .
 4 20m AB x 
 3 35mCD x 

Find m AOB

C
D

O
A
B

CIRCLES UNIT PRACTICE PROBLEMS

24. FE = 6
CD = 9
BE = 4

a. Find A

B

b. Find D

E

DC

B
F
E
A

25. Given:    C

Y

AN                        a.   Solve for x

 

               3 10AFN x                  b.  Find measure of   C  
               5 14C x             c.   What is the measure of arc AN 

 

F

A

N

C

Y

CIRCLES UNIT PRACTICE PROBLEMS

26.

Given:
is isosceles, with base .

Circle , ,

ABC AC

P PQ AB PR CB 

Prove: is isoceles.PQR

Statements Reasons

 
 

27.  

Given:  Circle O,  XA YB  
Prove:   XAE YBE   
 
 
 
 
 
Statements Reasons

 
A
C
B

Q

R

P

Y
A
B
E
X

Order a unique copy of this paper

600 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
Top Academic Writers Ready to Help
with Your Research Proposal

Order your essay today and save 25% with the discount code GREEN