Performance Lawn Service, Episode6

 An important part of planning manufacturing capacity is having a good forecast of sales. Elizabeth Burke is interested in forecasting sales of mowers and tractors in each marketing region, as well as industry sales, to assess future changes in market share. She also wants to forecast future increases in production costs. Develop forecasting models for these data and prepare a report of your results with appropriate charts and output from Excel. Upload your Word document AND your Excel worksheet file 

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Excel sheet attached to add to assignment

2

>

Dealer Satisfaction

Dealer Satisfaction
tc={BC

3 4 0

A

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper
24

8

BBA-

4

9 1 F

-B

40

1-F2D

94

0BCB

7 41

}: [Threaded comment]

Y

our version of E

x

cel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=8

70 92

4
Comment:

This chart is showing Dealer Satisfaction between

N

orth America

,

South America

,

Eur

ope

,

Pac

ific Rim

and

China

. The data that was selected was rated on a a survery scale from 0-

5

and between the the years of

20 10

-20

14

, except for China who started later in

20

12

. North America was leading in

sample

si

z

e and “in 5s” dealer satisfacion for “excelltence”. Although North America recieved the highest

total

numbers in dealer satisfactions for excellent rankings, in

201

4

, South America recieved

6

0

surverys and North America recieved

56

within the level 5 category.

Survey Scale:

0 1 2 3 4 5

Sample North America

Size 2010

1 0 2 14

22 11 50 2011

0 0 2 14 20 14 50
2012

1 1 1 8

34 15 60 20

13

1 2 6 12 34

45 100 2014

2 3 5 15

44

56

1

25 South America
2010 0 0 0 2 6 2 10
2011 0 0 0 2 6 2 10
2012 0 0 1 4 11 14

30 2013

0 1 1 3 12

33

50
2014 1 1 2 4 22 60

90 Europe 2010 0 0 1 3 7 4 15
2011 0 0 1 2 8 4 15
2012 0 0 1 2 15 7 25
2013 0 0 1 2

21

6 30
2014 0 0 1 4

17

8 30
Pacific

Rim
2010 0 0 1 2 2 0 5
2011 0 0 1 1 3 0 5
2012 0 0 1 1 3 1 6
2013 0 0 0 2 5 3 10
2014 0 0 1 2 7 2 12
China
2012 0 0 0 1 0 0 1
2013 0 0 1 4 2 0 7
2014 0 0 1 5 8 2

16

Dealer Satisfaction by

Region

and

Year

0 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014

Pacific Rim

2010 2011 2012 2013 2014 China 2012 2013 2014 1 0 1 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 0 0 1 2 3 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 2 2 1 6 5 0 0 1 1 2 1 1 1 1 1 1 1 1 0 1 0 1 1 3 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 14 14 8 12 15 2 2 4 3 4 3 2 2 2 4 2 1 1 2 2 1 4 5 4 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 22 20 34 34 44 6 6 11 12 22 7 8 15 21 17 2 3 3 5 7 0 2 8 5 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 11 14 15 45 56 2 2 14 33 60 4 4 7 6 8 0 0 1 3 2 0 0 2

This chart is showing Dealer Satisfaction between North America, South America, Europe,

Pacific Rim

and China. The data that was selected was rated on a a survery scale from 0-5 and between the the years of 2010-2014, except for China who started later in 2012. North America was leading in sample size and “in 5s” dealer satisfacion for “excelltence”. Although North America recieved the highest total numbers in dealer satisfactions for excellent rankings, in 2014, South America recieved 60 surverys and North America recieved 56 within the level 5 category.

End-User Satisfaction

D3-7E9F-4E7B-

FB-A

AAF2BD2E6}: [Threaded comment]
Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=

0924
Comment:
This chart is showing End-User Satisfaction between North America, South America, Europe, Pacific Rim and China. The data that was selected was rated on a a survery scale from 0-5 and between the the years of 2010-2014, except for China who started later in 2012. North America, South America, Europe, and the Pacific Rim all have the same sample size of 100 for each year between 2010 through 2014. China has a smaller sample size of 50 between the years of 2012 through 2014. You cansee that the ratings of 5’s, 4’s, and 3’s are the highest ratings. North America’s rating of 4 decreases every year starting with 2010 while the 5 ratings increase through the years. The Pacfic Rim’s 4 ratings are highest rated and is basically constant throughout the years while the 5 ratings are lower then 4 ratings the 5’s are constant throughout the years.

Sample
North America 0 1 2 3 4 5 Size
2010 1 3 6 15

100

2011 1 2 4

40 100

2012 1 2 5 17 34 41 100
2013 0 2 4 15 33

100

2014 0 2 3 15

100

South America

2010 1 2 5 18

38 100

2011 1 3 6 17 36 37 100
2012 0 2 6

37 36 100

2013 0 2 5 20 37 36 100
2014 0 2 5 19 37 37 100

Europe

2010 1 2 4 21 36 36 100
2011 1 2 5 21 34 37 100
2012 1 1 4

37 31 100

2013 1 1 3 17 41 37 100
2014 0 1 2 19 45 33 100

Pacific Rim

2010 2 3 5 15 41 34 100
2011 1 2 7 15 41 34 100
2012 1 2 5 16 40 36 100
2013 0 2 4 17 40 37 100
2014 0 1 3 19

35 100

China

2012 0 3 3 6

10 50

2013 1 2 2 4 30 11 50
2014 0 1 1 3 31 14 50
End-User Satisfaction
tc={4E17

82 83 93 87
37 38
18 35
46
31 49
36
19
26
42
28

End-User Satisfaction by Region and Year

0 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 2 1 1 0 0 0 1 0 1 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 3 2 2 2 2 2 3 2 2 2 2 2 1 1 1 3 2 2 2 1 3 2 1 2 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 6 4 5 4 3 5 6 6 5 5 4 5 4 3 2 5 7 5 4 3 3 2 1 3 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 15 18 17 15 15 18 17 19 20 19 21 21 26 17 19 15 15 16 17 19 6 4 3 4 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 37 35 34 33 31 36 36 37 37 37 36 34 37 41 45 41 41 40 40 42 28 30 31 5 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 38 40 41 46 49 38 37 36 36 37 36 37 31 37 33 34 34 36 37 35 10 11 14

This chart is showing End-User Satisfaction between North America, South America, Europe, Pacific Rim and China. The data that was selected was rated on a a survery scale from 0-5 and between the the years of 2010-2014, except for China who started later in 2012. North America, South America, Europe, and the Pacific Rim all have the same sample size of 100 for each year between 2010 through 2014. China has a smaller sample size of 50 between the years of 2012 through 2014. You can see that the ratings of 5’s, 4’s, and 3’s are the highest ratings. North America’s rating of 4 decreases every year starting with 2010 while the 5 ratings increase through the years. The Pacfic Rim’s 4 ratings are highest rated and is basically constant throughout the years while the 5 ratings are lower then 4 ratings the 5’s are constant throughout the years.

Complaints

-45

-AF

-C4

93}: [Threaded comment]
Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924
Comment:
This chart is showing PLE’s Complaoints from registered by all customers each month within PLE’s 5 regions. From this data we can conclude that there is more use of the equipment in the summer months because of the higher number of complaints recieved. Based off the data shown form the region of China, their compaints are few and are steady throughout the months. This could be because they do not use this type of equipment in comparison to the other regions.

onth

Eur Pac China

-10

12

3

-10

13 55 4

-10

15

6

-10

16

7

-10

17 73 5

-10

19 82 9

-10

18

7

-10

128 16

3

-10

15 73 4

-10

14

2

-10

11

0

-10

9 54 1

10 59 3

13 62 5

16

6

20 70 11

22

8

6

28

12

25

10

23

8

20 73 7

16

5

201

13 66 4

96 11 61 3

15 66 4 3

18 71 6 4

20 76 9 3

23 79 11 2

152 26

14 5

163 30 91 15 6

28

18 5

9

26 86 15 4

24 82 13 4

131 21 76 12 3

128 18 73 10 3

15 70 7 4

216

19 74 8 5

123 23 79 10 4

266 138 26 83 13 6

30

11 5

33 91 15 7

37 95 19 8

169 34 92 17 7

32 90 15 7

141 29 87 14 6

123 26 83 12 6

112 24 77 10 5

23 74 7 4

240

26 80 8 5

126 28 82 10 5

31 85 12 5

35 89 13 6

39 95 12 8

43 98 15 11

170 41 95 14 10

38 93 13 9

33 89 11 7

136 30 85 8 6

121 26 80 7 5

23 76 7 5

Complaints
tc={3A6BEBAD-C

122 73 72 23 91 97 55
M World NA SA
Jan 1

69 102 52
Feb 187 115
Mar 210 128 61
Apr 226 136 67
May 2

32 137
Jun 261 1

51
Jul 245 140 80
Aug 223 76
Sep 1

95 103
Oct 1

74 96 62
Nov 1

54 84 59
Dec 1

63 99
Jan-11 195 123
Feb-11 221 141
Mar-11 240 152 66
Apr-11 2

64 163
May-11 283 1

78 75
Jun-11 29 170 86
Jul-11 269 1

53 81
Aug-11 256 146 79
Sep-11 231 131
Oct-11 214 125 68
Nov-11 118
Dec-11 1

71
Jan-12 200 112
Feb-12 216 117
Mar-12 234 126
Apr-12 253 138
May-12 282 85
Jun-12 305
Jul-12 296 156 89
Aug-12 27 1

48
Sep-12 266 1

43
Oct-12 243
Nov-12 232
Dec-12 203 107
Jan-13 110
Feb-13 2

39
Mar-13
Apr-13 284 150 88
May-13 315 169
Jun-13 340 181
Jul-13 319
Aug-13 304 160
Sep-13 2

77
Oct-13 250
Nov-13 228
Dec-13 213 105
Jan-14 121
Feb-14 251
Mar-14 281 148
Apr-14 2

98 155
May-14 322 168
Jun-14 350 183
Jul-14 330
Aug-14 311 1

58
Sep-14 289 149
Oct-14 2

65
Nov-14 239
Dec-14 219 108

Complaints by Month and Region

World 40

179

40210 40

238

40269 40

299

40330 40

360

40391 40422 40452 40483 40

513

40544 40

57

5

40

603

40634 40664 40

695 407

25 40

756

40787 40817 40

848

40

878

40909 40940 40969 41000 41030 4

106

1 4

109

1 41122 41

153

4

1183

4

1214

4

124

4

41

275

4

130

6

4

133

4 41365 4

139

5 4

142

6

4

145

6

41487 4

151

8 41

548

4

157

9 41609 41

640

41

671

41

699

41

730

41

760

41791 4

182

1 4

185

2

4

188

3 4

191

3 4

194

4

41

974

169 187 210 226 232 261 245 223 195

174 154

163 195 221 240

264

283 296 269 256 231 214 201

171

200 216 234 253 282 305 296

279

266 243 232 203 216 239 266 284 315 340 319 304

277

250 228 213 240 251 281

298

322 350 330 311 289

265

239 219 NA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41

244

4

127

5 41

306

4

1

334

41365 4

1395

41426 41456 41487 41518 41548 41579 41609 4

164

0 4

167

1 41699 4

173

0 4

176

0 41791 41821 41852 41883 41913 41944 4

197

4 102 115 128 136 137 151 140 128 103 96 84 99 123 141 152 163

178

170 153 146 131 125 118 96 112 117 126 138 152 163 156 148

143

131 128 107 110 123 138 150 169 181 169 160 141 123 112 105 121 126 148 155 168 183 170

158

149 136 121 108 SA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 12 13 15 16 17 19 18 16 15 14 11 9 10 13 16 20 22 28 25 23 20 16 13 11 15 18 20 23 26 30 28 26 24 21 18 15 19 23 26 30 33 37 34 32 29 26 24 23 26 28 31 35 39 43 41 38 33 30 26 23 Eur 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 4185 2 41883 41913 41944 41974 52 55 61 67 73 82 80 76 73 62 59 54 59 62 66 70 75 86 81 79 73 68 66 61 66 71 76 79 85 91 89 86 82 76 73 70 74 79 83 88 91 95 92 90 87 83 77 74 80 82 85 89 95 98 95 93 89 85 80 76 Pac 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 3 4 6 7 5 9 7 3 4 2 0 1 3 5 6 11 8 12 10 8 7 5 4 3 4 6 9 11 14 15 18 15 13 12 10 7 8 10 13 11 15 19 17 15 14 12 10 7 8 10 12 13 12 15 14 13 11 8 7 7 China 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 3 4 3 2 5 6 5 4 4 3 3 4 5 4 6 5 7 8 7 7 6 6 5 4 5 5 5 6 8 11 10 9 7 6 5 5

This chart is showing PLE’s Complaints from registered customers each month within PLE’s 5 regions. From this data we can conclude that there is more use of the equipment in the summer months because of the higher number of complaints recieved. China has the fewest number of compaints, this is due to the less customer usage. Based off the data, the Pacific Rim and South America do not have as many complaints as North America does due to less people using or purchasing PLE’s equipment. .

Mower

Unit Sales

Month NA SA Europe Pacific China World

0

200

100 0

0

0

250

110 0

280

120 0

0

0

130 0

0

120 0

0

280

0 140 0

250

130 0

1590 130 0

0

220

0 120 0

0

210 990 130 0

140 0

Jan-11

210

140 0 7020

Feb-11

240 1020 150 0

Mar-11

0

250

140 0

Apr-11

290

0 150 0

May-11

330

0

130 0

Jun-11

310 1590 140 0

Jul-11

290

150 0

Aug-11

270

140 0

Sep-11

250 1590 150 0

0

Oct-11

250

160 0

Nov-11

240 900 150 0

0

Dec-11

210 660 150 0

0

Jan-12

220

160 0

Feb-12

0

250 840 150 0

Mar-12 8430 270 1110 160 0

Apr-12

310

170 0

May-12

360

160 0

Jun-12

330

170 0

Jul-12 9050 310

0 160 0

Aug-12 7620 300 1410 170 0

Sep-12

280

0

180 0

0

Oct-12

270

180 0

0

Nov-12

260 840

0

Dec-12

230 510 180 0

Jan-13

0

250 480 200 0

Feb-13

270

190 0

Mar-13 8430 280

0

200 0 10050

Apr-13

320 1410 210 0

May-13

0

190 0

40

Jun-13

20

360

200 0

0

Jul-13

320 1410 200 0

0

Aug-13

310

210 0

Sep-13

300

220 0 8370

Oct-13

290 980 210 0

Nov-13

270

220 0

Dec-13

260 430 230 0

Jan-14

270

200 0

Feb-14

0

280 750 190 0

Mar-14

300 970 210 0

0

Apr-14

340 1310 220 5

May-14

200 16

Jun-14 10230 380

210 22

2

Jul-14

350

230 26

Aug-14

340

220 14

Sep-14

320

220 15

Oct-14

310 970 230 11

1

Nov-14

0

300 650 240 3

3

Dec-14

290 300 230 1

Mower Unit Sales
tc={6A814A1A-8E51-48A1-A543-AEC7E2B5497F}: [Threaded comment]
Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924
Comment:
The chart identifies the unit sales PLE’s mower equipment. We can see that the highest peak for mower sales is in the summer months and then a decline in sales starting in early fall months. BAsed off this chart, North America is the region with the highest unit sales for PLE’s mowers.
Jan-10 600 720 7020
Feb-10 7950 220 990 120 9

280
Mar-10 810 1

320 9

780
Apr-10 9050 1

650 111
May-10 9

900 310 1

590 11

930
Jun-10 1020 300 1

620 1

224
Jul-10 8730 159 10

740
Aug-10 8140 1

560 10080
Sep-10 6

480 230 8

430
Oct-10 599 132 7650
Nov-10 532 6650
Dec-10 4640 180 660 5620
5

980 690
7620 9030
837 1

290 10050
8

830 162 10

890
9310 165 11

420
10230 12

270
8720 1560 10720
7

710 1

530 9650
6320 831
5

840 1

260 7

510
4

960 625
4350 537
6020 570 6

970
792 9160
9970
9040 1

500 11020
9

820 1

440 11780
10370 1410 1

2280
144 10960
9500
6420 135 823
5890 1080 742
5340 190 6

630
4430 5350
610 7030
8010 750 9220
114
9110 11050
9730 380 134 116
101 1360 1

204
9080 1101
7820 1

490 9830
6540 1310
6010 7490
5270 770 6530
5380 6300
6210 400 7080
803 9250
8540 1002
9120 10995
9570 390 1260 11

436
1240 1

208
9

580 1300 11486
7

680 1250 9504
6870 1210 8635
5930 745
526 645
4830 5

651

Mower Unit Sales by Month and Region

NA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 6000 7950 8100 9050 9900 10200 8730 8140 6480 5990 5320 4640 5980 7620 8370 8830 9310 10230 8720 7710 6320 5840

496

0 4350 6020 7

920

8430 9040 9820 10370 9050 7620 6420 5890 5340 4430 6100 8010 8430 9110 9730 10120 9080 7820 6540 6010 5270 5380 6210 8030 8540 9120 9570 10230 9580 7680 6870 5930 5260 4830 SA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 200 220 250 280 310 300 280 250 230 220 210 180 210 240 250 290 330 310 290 270 250 250 240 210 220 250 270 310 360 330 310 300 280 270 260 230 250 270 280 320 380 360 320 310 300 290 270 260 270 280 300 340 390 380 350 34 0 320 310 300 290 Europe 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 720 990

1320

1650 1590 1620 1590 1560 1590 1320 990 660 690 1020

129

0 1620 1650 1590 1560 1530 1590 1260 900 660 570 840 1110 1500 1440 1410 1440 1410 1350 1080 840 510 480 750 1140 1410 1340 1360 1410

1490

1310 980 770 430 400 750 970 1310 1260 1240 1300 1250 1210 970 650 300 Pacific 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 100 120 110 120 130 120 140 130 130 120 130 140 140 150 140 150 130 140 150 140 150 160 150 150 160 150 160 170 160 170 160 170 180 180 190 180 200 190 200 210 190 200 200 210 220 210 220 230 200 190 210 220 200 210 230 220 220 230 240 230 China 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 16 22 26 14 15 11 3 1 World 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 7020 9280 9780 11100

119

30 12240 10740 10080 8430 7650 6650 5620 7020 9030 10050

1089

0 1

1420 1

227

0 10720 9650 8310 7510

6250

5370 6970 9160 9970 11020 11780 12280 10960 9500 8230 7420 6630 5350 7030 9220 10050 11050 11640 12040 1

1010

9830 8370 7490 6530 6300 7080 9250 10020 10995 1

1436

12082 11486 9504 8635 7451 6453 5651

The chart identifies the unit sales on PLE’s mower equipment. We can see that the highest peak for mower sales is in the summer months and then a decline in sales starting in early fall months. Looking at the chart, North America is the region with the highest unit sales for PLE’s mowers.

Tractor

Unit Sales

Tractor Unit Sales

5A5C9}: [Threaded comment]
Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924
Comment:
The chart identifies the unit sales PLE’s tractor equipment. We can see that throughout the years with the World orange line shown in the graph increases total sales between the years of 2010 to 2014. The line is basically increase in a positive direction on this graph. And the increase in tractor sales increase in each region throughout the years as well. Overall there is a positive correlations between time and tractor unit sales over all of the country regions.

Month NA SA Eur Pac China World
Jan-10 570 250 560

0

Feb-10

270 600 230 0

Mar-10 630 260 680 240 0

Apr-10

270 650

0

7

May-10 650 280 580 269 0

9

Jun-10 600 270 590 280 0

Jul-10

264 760 290 0

Aug-10 500 280 645 270 0

Sep-10

8

290 650 263 0

Oct-10

280

0

3

Nov-10 407 290

240 0

Dec-10 360 280

230 0

0

Jan-11

320 620 250 0

Feb-11 650 350 760 275 0

Mar-11 740 390 742 270 0

Apr-11 840 440 780 280 0

May-11 830

690 290 0 2280

Jun-11 760 490

300 0

Jul-11 681

680

0

4

Aug-11 670

711 305 0

Sep-11 640 460 695 290 0

Oct-11 620 440 650 260 0

Nov-11 570 436 680 250 0

6

Dec-11

420

240 0

Jan-12 620 510 610 250 10

Feb-12 792 590 680 250 12

Mar-12 890 610 730 260 20

Apr-12 960 600 820 270 22

2

May-12

0

620 810 290 20

0

Jun-12

640

310 24

Jul-12

590 760 340 20

Aug-12

600 720 320 31

Sep-12 803 670 660

30

6

Oct-12 730 630 630 290 37

Nov-12 699 710 603 280 32 2324
Dec-12

570 570 260 33

Jan-13 730 650 500

35

Feb-13 930 680 590 290 50

0

Mar-13

620 300 63

7

Apr-13

730 730 310 68

May-13 1650 760 740 330 70

Jun-13 1490

720 340 82

2

Jul-13

840 670 350 80

Aug-13

830 610

90

1

Sep-13 1360 820 599 330 100

Oct-13 1340 810 560 320 102

Nov-13 1240

550 300 110

7

Dec-13

750

290 114

Jan-14 1250 780 480 200 111

Feb-14

210 121 3209

Mar-14

830 560 220 123

Apr-14 2010 890 570 230 120

May-14

930 590 253 130 4133

Jun-14

0

980 600 270 136

Jul-14

1002 580 280 134

Aug-14

4

970 570 250 132

Sep-14

960 550 230 137

Oct-14 2080 930 530 220 130

Nov-14

0

920

190 139

Dec-14

490 190 131

tc={65A5E7B3-7884-4D7D-9EEA-FA36

556
212 1592
611 1

711
1810
684 263 186
177
1740
512 1

826
1695
47 1

681
455 670 258 166
888 1

825
850 172
571 1761
2035
2142
2340
470
721 2

271
481 312 215
460 2146
2085
1970
193
533 657 1850
2000
2

324
2510
267
104 278
1032 807 2

813
1006 2716
910 2

581
313 247
2

317
647 2080
287 2

202
254
1160 724 286
1510 3

348
3

550
800 343
1460 3400
1390 341 326
3

209
3132
827 302
1103 520 2777
2821
1550 805 523
1820 3

553
3820
2230
249 4476
2440 4436
233 4256
2190 4067
3890
205 517 3

816
2004 902 3717

Tractor Unit Sales by Month and Region

NA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 570 611 630 684 650 600 512 500 478 455 407 360 571 650 740 840 830 760 681 670 640 620 570 533 620 792 890 960 1040 1032 1006 910 803 730 699 647 730 930 1160 1510 1650 1490 1460 1390 1360 1340 1240 1103 1250 1550 1820 2010 2230 2490 2440 2334 2190 2080 2050 2004 SA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 250 270 260 270 280 270 264 280 290 280 290 280 320 350 390 440 470 490 481 460 460 440 436 420 510 590 610 600 620 640 590 600 670 630 710 570 650 680 724 730 760 800 840 830 820 810 827 750 780 805 830 890 930 980 1002 970 960 930 920 902 Eur 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 560 600 680 650 580 590 760 645 650 670 888 850 620 760 742 780 690 721 680 711 695 650 680 657 610 680 730 820 810 807 760 720 660 630 603 570 500 590 620 730 740 720 670 610 599 560 550 520 480 523 560 570 590 600 580 570 550 530 517 490 Pac 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 212 230 240 263 269 280 290 270 263 258 240 230 250 275 270 280 290 300 312 305 290 260 250 240 250 250 260 270 290 310 340 320 313 290 280 260 287 290 300 310 330 340 350 341 330 320 300 290 200 210 220 230 253 270 280 250 230 220 190 190 China 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 12 20 22 20 24 20 31 30 37 32 33 35 50 63 68 70 82 80 90 100 102 110 114 111 121 123 120 130 136 134 132 137 130 139 131 World 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 1592 1711 1810 1867 1779 1740 1826 1695 1681 1663 1825 1720 1761 2035 2142 2340 2280 2271 2154 2146 2085 1970 1936 1850 2000 2324 2510 2672 2780 2813 2716 2581 2476 2317 2324 2080 2202 2540 2867 3348 3550 3432 3400 3261 3209 3132 3027 2777 2821 3209 3553 3820 4133 4476 4436 4256 4067 3890 3816 3717

The chart identifies the unit sales for PLE’s tractor equipment. We can see that throughout the years with the World orange line shown in the graph increases total sales between the years of 2010 to 2014. The line is basically increase in a positive direction on this graph. And the increase in tractor sales increase in each region throughout the years as well. Overall there is a positive correlations between time and tractor unit sales over all of the country regions.

Q2

of

Year

2010 2011 2012 2013 2014

Month
Jan

3%

7%

2%

1%

Feb

9%

2

%

4%

Sum

Mar

8

%

8%

98.67%

2010 12

1937544

12772

Apr

2011 12

3

3

2701

May 98.73% 98.73%

99.22% 2012 12

Jun

98.78%

98.91%

2013 12

2

0976

54

Jul

8%

2014 12

8

8

13

Aug 98.67% 98.67%

99.23%

Sep 98.94% 98.58% 98.77%

%

Oct

98.69% 98.67% 98.99% 99.23%

Nov

98.69%

98.43%

F

Dec

%

98.81% 99.12%

4

579

2

75

3

96

55

1

59

Sum Percent
Anova: Single Factor
9

8.4 98.44% 9

8.6 9

8.9 9

9.2
SUMMARY
98.09% 98.63% 9

8.7 9

8.8 9

9.1
Groups Count Average Variance
9

7.5 9

8.3 98.91% 99.28% 11.

819 98.49% 0.0000
98.6

0% 98.73% 98.80% 98.97% 99.22% 1

1.8 727 98.61% 0.0000022009
98.84% 99.11% 11.8531797187 98.78% 0.000000506
98.64% 98.81% 99.08% 1

1.87 309 98.94% 0.00000

347
9

8.5 98.71% 98.89% 98.99% 99.23% 1

1.88 252 563 99.07% 0.0000

1378
98.77% 99.12%
9

8.93 98.69%
98.76%
ANOVA
98.

50% 98.83% 99.29%
Source of Variation SS df MS P-value F crit
98.39% 9

8.33 98.01% Between Groups 0.0002607821 0.0000651955 9.9 207 0.0000039122 2.5 886 349
Within Groups 0.0003600906 0.000006

547
Total 0.0006208727

On-Time Delivery

o the customer. For example, for the month of

of 2010, PLE’s had a total of

deliveries but out of that number,

when delivered on-time. This chart makes is easy to compare those deliveries.

Percent

Jan-10 1086

98.4%

Feb-10 1101 1080

%

Mar-10

1089

%

Apr-10

May-10 1183

Jun-10

1160 98.6%

Jul-10

98.6%

Aug-10

98.7%

Sep-10

1210

Oct-10

Nov-10 1198

Dec-10

1223 98.4%

Jan-11

98.4%

Feb-11

1224 98.6%

Mar-11

98.4%

Apr-11

98.7%

May-11

98.7%

Jun-11 1227

98.8%

Jul-11 1243 1227 98.7%
Aug-11

98.7%

Sep-11

98.6%

Oct-11

98.7%

Nov-11

1281 98.7%

Dec-11

Jan-12 1281 1264 98.7%
Feb-12 1320

98.8%

Mar-12

1334 98.7%

Apr-12

1320 98.8%

May-12

98.8%

Jun-12

98.8%

Jul-12 1352

98.9%

Aug-12

1360 98.8%

Sep-12

98.8%

Oct-12

98.7%

Nov-12

98.8%

Dec-12

98.8%

Jan-13

98.9%

Feb-13

1342 98.8%

Mar-13 1371 1356 98.9% Q2
Apr-13 1362

May-13 1350 1338

Anova: Single Factor

Jun-13

98.9%

Jul-13

1378 99.0% SUMMARY

Aug-13 1371

99.1% Groups Count Sum Average Variance

Sep-13

98.9% 2010 12 11.8191937544 98.49% 0.000012772

Oct-13

99.0% 2011 12 11.

7272701 98.61% 0.0000022009

Nov-13

1377 98.4% 2012 12 11.8531797187 98.78% 0.000000506

Dec-13

99.1% 2013 12 11.8

090976 98.94% 0.0000034754

Jan-14

1390

2014 12 11.8

5

63 99.07%

Feb-14

99.1%

Mar-14 1395 1385

%

Apr-14

1401 99.2%

ANOVA
May-14

1392 99.2% Source of Variation SS df MS F P-value F crit

Jun-14

1402 99.1% Between Groups 0.0002607821 4 0.0000651955 9.9579207275 0.0000039122

6349

Jul-14 1426 1415 99.2% Within Groups 0.0003600906 55 0.0000065471
Aug-14

1420 99.2%

Sep-14

1426 98.7% Total 0.0006208727 59

Oct-14

99.2%

Nov-14

1403 99.3%

Dec-14 1456

Month
tc={378CB2D4-4814-4165-B17B-6903BF4AE16B}: [Threaded comment]
Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924
Comment:
We decided to use a clustered column chart to represent the On-Time deliveries for PLE’s unit deliveries. The darker backgorund makes it easier to see the difference in the deliveries and the ones that were delivered on

time t January 1086 98.4% Number of deliveries Number On Time
1069
9

8.1
1116 9

7.6
1216 1

199 98.6%
1168 98.7%
1176
1

198 1181
1205 1

189
1223 98.9%
1209 1194 98.8%
1180 98.5%
1243
1220 1201
1

241
1

237 1

217
1258 1

242
1

262 1

246
1212
1281 1264
1

272 1254
1

295 1278
1298
1

318 1296 98.3%
1304
1352
1

336
1

291 1

276
1

342 1326
1

337
1377
1385 1368
1356 1

338
1362 1

346
1349 1

333
1386 1371
1358
1348 99.0%
99.1%
1381 1366
1392
1359
1402 1387
1384 1370 833
1399
1369 1357 723
1401 99.2% 882 285 0.0000137813
1388 1376
9

9.3
1412
1403
1415 2.539

688
1431
1

445
1425 1414
1413
1427 98.0%

On Time Delivery by Month

Number of deliveries 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 1086 1101 1116 1216 1183 1176 1198 1205 1223 1209 1198 1243 1220 1241 1237 1258 1262 1227 1243 1281 1272 1295 1298 1318 1281 1320 1352 1336 1291 1342 1352 1377 1385 1356 1362 1349 1386 1358 1371 1362 1350 1381 1392 1371 1402 1384 1399 1369 1401 1388 1395 1412 1403 1415 1426 1431 1445 1425 1413 1456 Number On Time 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 1069 1080 1089 1199 1168 1160 1181 1189 1210 1194 1180 1223 1201 1224 1217 1242 1246 1212 1227 1264 1254 1278 1281 1296 1264 1304 1334 1320 1276 1326 1337 1360 1368 1338 1346

1333

1371 1342 1356 1348 1338 1366 1378 1359 1387 1370 1377 1357 1390 1376 1385 1401 1392 1402 1415 1420 1426 1414 1403 1427 Percent 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974

0.9

8

43

462

2467771637 0.98092

643

051771122 0.975

806

45

161

2

90

325

0.986019736

842

10531 0.

987

3

2037

19357565 0.9863945578231

292

4 0.9858096

828

046744 0.98672199170124486 0.98937040065412918 0.98759305210918114 0.

984

9749582637729 0.9

839

0989541432017 0.9

8442 622

9508

196

69 0.9

8630

13

698

6

301

364 0.9

838

3185125

303

152 0.9872813990461049 0.987

321

71156893822 0.987775061124

694

38 0.9871279163

314

5613 0.986729117876

658

85 0.985

849

0566037

735

3 0.98687258687258683 0.98690292758089371 0.98330

804 248

8

619

14 0.98672911787665885 0.9878787878787

879

1 0.986

686

39053254437 0.98802395

2095

8084 0.98

8381

0999

225

4064 0.98

8077

496

274

2

175

9 0.98890532544378695 0.9876543209876

542

7 0.98772563176

8953

12 0.98672566371681414 0.98825256975036

713

0.98813936249073386 0.98917748917748916 0.98821796759941094 0.98905908096280093 0.989720998

5315

7125 0.99

1111

11111111116 0.98913830557566984 0.989942528735

6321

5 0.9912

472

6477024072 0.9893009985

734

6643 0.98988439306358378 0.98427448177269483 0.9912

344

7772096418 0.99214

846

53

818

7007 0.9913544668

587

8958 0.992831541

218

63804 0.99220963

1728

04533 0.99215965787598004 0.990

812

72084805649 0.992286

1150

0701258 0.99231306

778

47

659

1 0.986851

211

07266

438

0.99228070175438599 0.9929228

591 6489

742 0.9800

824

1758241754

We decided to use a clustered column chart to represent the On-Time deliveries for PLE’s unit deliveries. The darker backgorund makes it easier to see the difference in the deliveries and the ones that were delivered on time to the customer. For example, for the month of January of 2010, PLE’s had a total of 1086 deliveries but out of that number, 98.4% when delivered on-time. This chart makes is easy to compare those deliveries.

Response Time

Response times to customer service calls
tc={912794B6-EB87-

4831

-A2F0-71C2CACF797B}: [Threaded comment]
Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924
Comment:

From the data in this line graph, on response time between quarters, we are able to determine that there is no correlation between response times and quarters from how the lines on the graph are random.

Q1

2013

Q2 2013

Q3

2013

Q4

2013

Q1 2014 Q2 2014 Q3 2014 Q4 2014 4.3

6 4.33 3.7

1 4.4

4 2.7

5 3.4

5 1.6

7 2.55 5.4

2 4.7

3 2.52 4.07 3.2

4 1.9

5 2.58 2.3

0 5.5

0 1.63 2.6

9 5.1

1 4.35 2.77 3.47 1.04 2.79 4.2

1

3.47

3.49 5.58

1.83

3.1

2 1.5

9 5.55 6.8

9 5.12 4.6

9 2.8

9 3.72 1.00 3.11 3.6

5 0.92

1.00

6.3

6 5.09 4.5

9 5.40 4.05 8.02 5.2

7 3.44 8.2

6 2.33 1.1

7 3.9

0 3.3

8 4.00 0.90 6.04 1.91 1.69 1.4

6 4.49 1.2

6 3.34 3.8

5

2.53 8.93

3.88 1.90 2.06

0.90
4.9

2 5.00 2.39 6.85 3.39 2.9

5

4.49

2.31 3.5

5 3.52 3.26 5.6

9 5.14

4.69

3.57 2.71 3.52

5.20 4.68 3.05

0.98 3.34

3.41 1.65 1.25 5.13 3.59 5.9

1 2.34

3.59

3.31 3.58 2.1

8 5.29 1.07

1.00

2.80 4.03

2.79

2.96 4.35 1.00

2.86 1.82 3.06

2.39

2.09 3.78 2.4

6

2.18 4.44

3.74 2.40

1.63

4.28 2.87 2.07 4.55 4.8

7 6.1

1

1.59 2.40

4.47

0.90
2.90 2.13 6.7

6 4.78

3.05 4.44

1.94

4.87
2.58

5.24 2.84 4.1

3 1.50 4.96

3.90 3.11
5.50

4.08

1.25

7.1

7

5.58

4.41 3.32

0.90
2.47 4.04 3.43 5.7

0

3.11

3.40 2.2

0

3.52
4.24

5.09

2.98

1.00

1.08 3.15

3.52

3.18 1.88

7.66 4.65

3.40

3.63

4.87 2.31 0.90
4.25

4.65

2.66 2.04 1.86 3.97

1.00

1.3

5 5.08

0.90

4.99 4.37

1.90 3.85

5.90 1.62 4.40 2.01 3.76

2.47

6.07 2.81 1.09

1.87
1.64 1.34

3.12

3.20

1.00

1.7

6 4.60 1.03 6.4

0 8.05 2.12 5.8

3

1.00 5.58 3.52 2.31
3.68 4.91 4.32 3.94 1.19 4.92 4.14 1.99 3.92 5.06 3.61

2.47

3.79 2.63

4.13 3.97
4.13 3.26

4.02 3.89 5.86 3.27 2.43

1.00
3.34

4.26

2.63

6.88

0.90 2.86 2.34

3.51 3.28 1.70

4.47

1.71 2.24 3.83

2.53

2.41 3.24 2.30

4.18 6.39

0.90

1.79

4.14 2.47
3.25 5.3

5

4.73

6.5

7 3.87 2.70 2.65

4.02
5.20 2.33 2.65 4.18 2.46 3.61

3.21 2.03 5.28 3.67 2.36

8.82

3.84

0.90 3.85

3.62 4.33 4.73

3.64 3.35

2.43 3.38 2.20

4.12 4.64 1.05 5.62

5.50

1.54 4.38 4.57 1.40 2.65

2.67

0.90

6.51

0.90 2.87

2.99 2.49 3.42 4.16

6.40 0.90

3.69 2.11 4.19

2.67
3.97 0.90 3.21 2.87

1.73

2.86

3.03

4.33
1.26 3.51 3.55

7.4

5

3.52 3.12 1.90 1.95
6.16 5.95 5.93

3.49

2.23

1.86 2.09 2.70
6.40

2.05 5.52

3.03 5.35 2.41 1.03 1.76
1.00

8.21

4.96

7.46 5.11

2.98 2.95

2.64 3.63 2.52

4.85 4.84 6.46

0.90

7.42

4.49
5.34 3.99 5.57 2.88 5.61 1.01

3.79 1.62
3.74

2.59 4.82 0.95

3.63

4.56 2.48 1.10 5.63

1.34 3.18 3.05 3.87

5.67

2.71

4.50

Response Time by

Quarter

and Year

Q1 2013

4.356805690747569 5.4

1564

5561640849 5.50

147

957886802

2.78

66492627596018 5.54956842910

323

72 3.6535666521900567 8.019138264842

331

1

4.004536792

2517

467 3.3431904438999482 4.915911533

2600

773 3.5546503494

857

462 3.52

316

51

2083

9

257

8 1.25

339

53549223953 2.1813659868144897 4.3525

1128

4

1394

726 2.45888

2833

6505686 2.0693403411656619 2.9026272313

2182

15 2.5

783

995324105491 5.4993536350026258 2.473652

345

4863346 4.2446331

617

044049 1.87643219481

979

04 4.2502707

7830

01821 5.0840524

335

741062 4.4030024509425854 1.6400465637503658 6.4004

832

59

255

9975 3.679108901394

6476

3.9

1981

2

1311

870637 4.1274743

2795

87707 3.335

307

0575118 182 3.2786815

763 1892

25 3.2

441

31123

15378

39 3.2535645158874105

5.19

940228

235

7914 5.281745886

293

356 4.

329

6535

222

340022 4.6425480076664822 2.651

5938

470198

308

3.4188237959257095 3.972181

8592

966884 1.2641333041

1887

74 6.1579749098542376 6.40

259

37417114616 1 3.63381

6633

680

5444

5.3400354017299829 3.737601347

836

6077 5.6347801245807201 Q2 2013 4.

332

5643203628719 4.7253575742855904 1.6261836647812742 4.205002231471008 6.88708437185

268

88 0.92

273

817092645904 5.2676703929377258 0.9 3.849

696

30279

229

01

5.003429

667

6371017 3.5156336

692

365584 5.

19655

92759428549 5.1282537227292782 5.2

8528

1393

595

5059 1 2.1758940859639551 4.55459

8807

159346 2.13347707

206

26692 5.24136439555

732

1 4.0773214535205629 4.03920998753

7470

1 5.086

1743

587360255

7.65

92344

597

214836 4.6470289347111251 0.9 2.0076011863478924 1.3415140968631021 8.0482562664896253 4.913553401207901

5.05

73001756914895 3.257

615

9340591402 4.263339950

1268

29 1.699210

1776

180788 2.2969732966215815 5.3534252841258425 2.331

2703

418254386

3.66

66470790136372 4.7275287655123979 1.0453071

3390

55895 2.6700355177366872 4.15733834

2635 1942

0.9

3.50

7

673

3

1685

92908 5.95057

4494

2056484 2.0504684001265558 8.2124891817569736 2.516807

9431

08

1423

3.9860188720

25306

2 2.5933316904469392 1.33

90093

484544194

Q3 2013

3.

714

6412572171541 2.5241054166387

769

2.689668013160

1172

3.4734687281586232 5.121887857355178 1 3.4443303369032221 6.0388986233435578 2.5292204148415478

2.38

820

1442

3422517 3.2575

328

580848875 4.6841771612223244 3.5920

977

600896733 1.0686919770948591 2.8610331858787688 4.4406181180663413

4.86

67564036138362 6.7562134566530592

2.83

61203070078047 1.2506345731951298 3.4268334778305145 2.9840077834948899 4.6549896572530276 2.658026692485437

4.98

87814887613064

3.75

90027707908304 3.1200700098695235 2.1182925186865034

4.31

61

646

820651374 3.6110

86190

473

288

5 4.020589817925357 2.6307855071779342 4.4749861038569367 4.

184

2934072762734 4.7

294

22703646124 2.646999978721142 2.363

2449

077256026 3.639

784

3862930315 5.618093

614

7272593 0.9 6.4001208150573081 3.2102573234867307 3.

5474

379322538154 5.9302431103121496 5.5190132619161165 4.9623

297

448549426 4.8508693501632667 5.5698431018088019

4.81

7243512049318 3.1770789567660542

Q4 2013

4.4392094297145377 4.0731587306290749 5.112268023462093

3.48

56877947313478 4.6882091838633642 6.3605414298799587 8.2577867134241387 1.911404

5345

340855 8.9296140787191689 6.8537

1106

65638465 5.687837084318744

3.04

70982

9934

29061 5.9130352484353352 1 1.8187038323085289 3.7439

606

431726133 6.1054524950159248

4.77

54579200991429 4.

1273

587031391799 7.174651283188723 5.7005295376293361 1 3.3979271266653086 2.04140065862

15692

4.3706494453581399 2.46602

327

1248

5595

3.2023929280549055 5.8332041

236

13541

3.93

61662048613653 2.4685073286527768 3.8865800989733543 6.8755

1029

0

3232

91 1.7119800860236865 6.3871489247540012 6.5707099

6667 60769

4.1814614734030329 8.8249639803543687 3.3480947750867927 5.499761538070743 6.5071526579267811 0.9 2.8718966505985009 7.4505069379520137 3.48786512504

739

22 3.0321399536696845 7.4588620110298507 4.844769601826556 2.8833146744582336 0.95167707614018582 3.0501850106738857 Q1 2014 2.74

5604

0207704064 3.2393556203765912 4.35392261907

1090

2 5.5

83725

4386511628 2.894123937135737 5.0948083718190897 2.3263553849625169 1.68635

192

14035478 3.87925

847

10841767 3.391531

705

4430489 5.1440984371816736 0.98274408274446623 2.3405503235204379 2.8036

798

04

9521168 3.0573333298030776 2.4015251220640494 1.588542587438

1327

3.050259

7347

600386 1.5024861987563782 5.58

1679

0755721737 3.1106598463389674 1.0826270646299236 3.

6316

638862495894 1.8572

6075

51555849 1.8951628099835944 6.0711554816458371 1 1 1.1885672812291888 3.78

6145

5403850415 5.8584701456362378 0.9 2.2395776532954188 0.9 3.8749611086182996 2.464285372394079 3.8408806368403021 2.429744468923309 1.5390717600035715 0.9 3.6867980235052529 1.7277737207274186 3.5219481297695894 2.2330224702323904 5.35140183

8293

5316 5.1112406673433721 6.4554624678799879 5.6095641831285317 3.63205098

99320

315

3.86

95416570641101 Q2 2014 3.4465603756718339 1.95467528909212

2.76

9119381

7037

858 1.830401933041867 3.7153588062967176 4.

5882

04054819653 1.1652720867306927 1.4585909492627254 1.8973007253254766 2.954022

1556

84652 4.68

7944

24

6036

9321 3.3438613708160121 3.5946013293898433 4.0304668881464751 2.38

5789

8749003654 1.6263281476160047 2.3982745086716024 4.4406580935930835

4.95

79172890691554 4.4146033441240435 3.3970261109818241 3.1488661615032472 4.872832695476

2453

3.969714915804798 3.8509883405669827 2.8099522832082586 1.761472239089

1986

5.5786442397977227 4.9162933545478156 2.6285494722134901 3.2720810930943118 2.8562667092803169 3.83486

68648

570312 1.7931613082357218 2.7003026924678126 3. 61359089664

1835

7 0.9 3.3844030066422421 4.3807401

2789

29321 2.872878402634524 2.

113

6076692375356 2.8578058016893921 3.1247515916067643 1.85992958

8029

6269 2.4143211784423331 2.9756362972

7228

56 0.9 1.0139794620801696 4.5589501577371268 5.6660748749738561 Q3 2014 1.6701319585336023 2.5849427136818122 3.4712812824436696 3.1168675112239725 1 5.3960551516211126 3.895330913408543 4.4883640915286378 2.0577209700859385 4.4860002011118922

3.56

69281790687819 3.4085343334736535 3.3083

6571

34084206 2.7882290472261957 2.0893796280033712

4.27

85482113031321 4.4665714616057812 1.9354151921361336 3.8966397899712319 3.3

18329

0004926675 2.1960299894344644 3.5221082233219931 2.3136046896324842 1 5.8955778361705597 1.0873686808990897 4.5958403309923597 3.5192415528654237 4.14

1574

4438636466 4.133797013

608

2731 2.4295045553371892 2.3373820643

682

848 2.5318425476398261 4.1416370853112312 2.64

5699

97246

1443

4 3.211

1527

80593693 3.85011697592563 2.202989783952944 4.5730

1576

5643504 2.9913637225290586 4.1850706869154237

3.02

59632315646741 1.9018393762307824 2.0914913041706313 1.0339421199460048 2.9528837406614912 7.4192420318722725 3.7933836059237365 2.4752080851867504 2.7

1286

47919453215 Q4 2014 2.5510757682699476 2.30313841

7619

6297 1.043

2483

764365315 1.5865764185495208 3.1144282689187093 4.0469112450868128

3.37

78203219757414 1.25575681572

6635

9 0.9 2.3109832641

6977

21 2.7098836613280581 1.6538044479151721 3.5820508815508219 2.9565219124837312 3.

7752

575695325503 2.8747584524811827 0.90147952555562361 4.8724379853869326

3.10

8204

7103

613148 0.9 3.51625

7921

1377305 3.1823331897161551 0.9 1.3526853040733839 1.6183518896927125 1.8669454407703596 1.0325304361234884 2.31182863949507 1.9896637882542563 3.9

6894

45844036526 1 3.5086081612011184 2.410366592403443 2.4695753796098869

4.01

89783890586117 2.0281505344886681 3.6200026175269158 4.1219250038469912 1.4048089001793413 2.4852340362034737 2.667

6015

937031479 4.3273157376010207 1.9502917626

1450

62 2.7026329421918489

1.75

8633944109897 2.6436946159723447 4.4879045349720403 1.6248547768103889 1.

10000

00000000001 4.4970204003679104

From the data in this line graph, on response time between quarters, we are able to determine that there is no correlation between response times and quarters from how the lines on the graph are random.

Part 2 – Shipping

Cost

/

Plant Existing /Proposed

Existing

Kansas City Existing

Existing Toronto

Santiago Existing

Kansas City Existing

$2.13

Proposed

Santiago Existing Shanghai

Proposed

Kansas City Existing

Proposed

Santiago Existing Mexico City

$1.58

Proposed

Kansas City Existing

Proposed

Santiago Existing Melbourne $1.49

Kansas City Existing

$1.49

Santiago Existing London $1.58

Kansas City Existing

Santiago Existing Caracas

Kansas City Existing

Santiago Existing Atlanta $1.31 $1.76
Singapore Proposed Toronto

$2.03

Birmingham Proposed Toronto

Mowers

Frankfurt Proposed Toronto

Existing Proposed Existing Proposed

Mumbai Proposed Toronto

$2.14 1

Auckland Proposed Toronto $1.86

2 50%

Singapore Proposed Shanghai

$1.78 3

Birmingham Proposed Shanghai

4

Frankfurt Proposed Shanghai

Mumbai Proposed Shanghai

$1.47

Auckland Proposed Shanghai

Singapore Proposed Mexico City $1.72

Birmingham Proposed Mexico City

$1.79

Frankfurt Proposed Mexico City $1.54

Mumbai Proposed Mexico City

Auckland Proposed Mexico City

Singapore Proposed Melbourne

Birmingham Proposed Melbourne $1.52

Frankfurt Proposed Melbourne

Mumbai Proposed Melbourne

$1.63

Auckland Proposed Melbourne

Singapore Proposed London

Birmingham Proposed London $1.47

Frankfurt Proposed London

Mumbai Proposed London $1.44 $1.82
Auckland Proposed London

Singapore Proposed Caracas $1.50

Birmingham Proposed Caracas $1.37 $1.86
Frankfurt Proposed Caracas

$1.88

Mumbai Proposed Caracas

Auckland Proposed Caracas $1.54 $1.98
Singapore Proposed Atlanta $1.73

Birmingham Proposed Atlanta

Frankfurt Proposed Atlanta

$1.70

Mumbai Proposed Atlanta

Auckland Proposed Atlanta

Unit Shipping Cost
Plant Existing Proposed Customer Mowers Tractors
Kansas City Toronto $1.36 $1.79
Santiago $1.49 $2.13
Shanghai $1.58 Auckland
$1.47 $2.03 Birmingham
Mexico City $1.32 $1.76 Frankfurt
$1.22 Mumbai
Melbourne $1.72 $2.34 Singapore
$1.80
London $1.86
$2.14
Caracas $1.54 $1.90
$1.00 $1.26
Atlanta $1.31 $1.82
$1.71
$1.34 $1.78 Tactors
$1.52 $1.87 Quartiles
$1.67 25% $ 1.31 $ 1.77 $ 1.40 $ 1.78
$2.19 $ 1.48 $

1.84 $ 1.52 $ 2.01
$1.44 75% $ 1.53 $ 2.11 $ 1.66 $ 2.17
$1.60 $2.15 100% $ 1.72 $ 2.34 $ 1.98 $ 2.68
$1.65 $2.32
$1.21
$1.18 $1.63
$2.09
$1.29
$2.04
$1.56 $2.22
$1.50 $2.07
$1.43 $1.70
$2.06
$1.73 $2.28
$1.38
$0.91 $1.17
$1.88 $2.68
$1.77
$1.37 $1.64
$1.98 $

2.60
$2.01
$1.59
$1.61 $2.08
$2.35
$1.02 $1.25
$1.42
$1.57 $2.23
$1.74 $2.26

You can see in the table of quartiles with Mowers and Tactors in Existing and Proposed shipping cost locations that Mowers have a slight increase in shipping costs in the proposed then the existing. There is also an increase in shipping cost in Tactors in Proposed locations compared to Existing locations.

Fixed Cost

Plants

Cost

Kansas City 10000

5,000.00

Kansas City

Santiago

Santiago 10000

Cost

Auckland

Auckland

Birmingham 15,000

Birmingham 20,000

Frankfurt 15,000

Frankfurt 20,000

Mumbai 15,000

Mumbai

Singapore 15,000

Singapore 20,000

Fixed Costs of Capacity Increase or New Construction
Current Additional Capacity
$60
20000 $985,000.00
5000 $381,000.00
$680,000.00
Proposed Locations Maximum capacity
15,000 $917,000.00
20,000 $1,136,000.00
$962,000.00
$1,180,000.00
$874,000.00
$1,093,000.00
$750,000.00
25,000 $959,000.00
$839,000.00
$1,058,000.00

Part 3 – Regions and Averages

China

2.60

Eur 4.33 4.10 3.90 3.87
NA 4.27 4.60 3.71 4.31
Pac 3.90 4.40 4.10

SA 3.92 4.28 3.50 4.24

4.40 3.67 4.14

Row Labels Average of

Ease of Use Average of

Quality Average of

Price Average of

Service
4.10 3.80 3.00
4.30
Grand Total 4.17

part 3

Row Labels Average of Price Average of Service Average of Ease of Use Average of Quality
China 3 2.6 4.1 3.8
Eur 3.9

4.1

NA 3.71 4.31 4.27 4.6
Pac 4.1 4.3 3.9 4.4
SA 3.5 4.24 3.92 4.28
Grand Total 3.67 4.14

3.8666666667 4.3333333333
4.165 4.395

Average of Price China Eur NA Pac SA 3 3.9 3.71 4.0999999999999996 3.5 Average of Service China Eur NA Pac SA 2.6 3.8666666666666667 4.3099999999999996 4.3 4.24 Average of Ease of Use China Eur NA Pac SA 4.0999999999999996 4.333333333333333 4.2699999999999996 3.9 3.92 Average of Quality China Eur NA Pac SA 3.8 4.0999999999999996 4.5999999999999996 4.4000000000000004 4.28

Q1

Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance

Quality 200 879 4.395

818844221

Ease of Use 200 833 4.165

108291457

Price 200 734 3.67

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups

33333333

2

0

08

42

Within Groups

597

764

25

Total

599

0.5
0.6
1.1367839196
5

4.90 27.4516666667 35.3531181914 3.01 1520
463.57 0.7 9916
518.4733333333

Part 3 –

2014 Customer Survey

2014 Customer Survey
Region Quality Ease of Use Price Service North America South America Europe Pacific Rim China
NA 4 1 3 4 Quality Ease of Use Price Service Quality Ease of Use Price Service Quality Ease of Use Price Service Quality Ease of Use Price Service Quality Ease of Use Price Service
NA 4 4 4 5 0 0% 1 1 1 2 0 0% 1 1 1 1 0 0% 2 3 1 1 0 0% 3 2 3 3 0 0% 2 3 2 1
NA 4 5 4 3 1 25% 4 4 3 4 1 25% 4 4 3 4 1 25% 4 4 4 3.25 1 25% 3 2 3 3 1 25% 3.25 4 3 2
NA 5 4 4 4 2 50% 5 4 4 4 2 50% 4 4 4 4 2 50% 4 4 4 4 2 50% 4 4 4 4 2 50% 4 4 3 3
NA 5 4 5 4 3 75% 5 5 4.25 5 3 75% 5 4 4 5 3 75% 5 5 5

3 75% 4.5 4 4 4 3 75% 4 4 3 3

NA 5 5 3 5 4 100% 5 5 5 5 4 100% 5 5 5 5 4 100% 5 5 5 5 4 100% 5 4 4 5 4 100% 5 5 4 4
NA 5 4 4 2
NA 5 5 4 5
NA 4 4 4 5
NA 4 5 4 5
NA 4 5 1 4
NA 5 5 4 4

NA 5 4 3 3 North America South America Europe Pacific Rim China
NA 4 5 4 4

Quality Ease of Use Price Service Value Quality Ease of Use Price Service Value Quality Ease of Use Price Service Value Quality Ease of Use Price Service Value Quality Ease of Use Price Service

NA 5 4 3 5 1 1 2 5 0 1 1 1 2 1 1 0 0 2 1 1 0 0 0 0 1 0 0 0 1
NA 5 5 2 5 2 0 2 10 3 2 0 1 8 0 2 1 0 1 2 2 0 1 0 0 2 1 0 2 3
NA 5 4 2 5 3 3 6 19 8 3 4 6 10 6 3 6 3 4 5 3 1 1 1 1 3 2 1 6 5
NA 5 4 2 5 4 30 47 41 44 4 24 35 23 22 4 12 14 14 14 4 4 6 7 5 4 5 7 2 1
NA 4 5 4 4 5 66 43 25 45 5 21 7 7 21 5 11 13 9 8 5 5 2 2 4 5 2 2 0 0
NA 4 4 5 4
NA 4 4 2 4
NA 4 3 3 4
NA 5 5 2 5
NA 5 3 4 3
NA 5 4 4 5

NA 5 5 2 5

NA 5 5 5 3

NA 4 4 5 4

NA 5 4 4 4
NA 5 1 5 5
NA 5 4 3 5

NA 4 5 1 4

NA 4 4 3 5
NA 5 3 4 4
NA 5 5 2 4

NA 5 4 4 4

NA 5 5 4 4

NA 5 5 4 5

NA 4 3 3 5
NA 5 4 4 3
NA 5 4 3 4
NA 5 5 1 5
NA 5 4 5 4
NA 3 4 3 4
NA 5 4 2 4

NA 5 5 4 5

NA 5 5 3 4

NA 5 4 4 4
NA 5 4 4 4
NA 5 4 4 5

NA 5 4 1 4
NA 5 4 5 5

NA 5 5 3 4
NA 5 4 4 5

NA 4 3 5 5
NA 5 4 4 4 Q1
NA 5 5 5 5
NA 5 5 4 5 Anova: Single Factor
NA 4 4 4 4
NA 5 4 5 5 SUMMARY
NA 4 5 5 4 Groups Count Sum Average Variance
NA 5 5 5 4 Quality 200 879 4.395 0.5818844221
NA 5 5 3 5 Ease of Use 200 833 4.165 0.6108291457
NA 5 4 4 4 Price 200 734 3.67 1.1367839196
NA 5 4 5 2
NA 4 4 5 5
NA 4 4 4 5 ANOVA
NA 5 4 4 4 Source of Variation SS df MS F P-value F crit
NA 5 4 3 5 Between Groups 54.9033333333 2 27.4516666667 35.3531181914 0 3.0108152042
NA 5 4 5 4 Within Groups 463.57 597 0.7764991625

NA 5 5 4 5

NA 5 4 4 4 Total 518.4733333333 599

NA 5 4 5 2

NA 5 3 4 5

NA 5 4 5 5

NA 5 4 1 5
NA 4 5 3 5
NA 3 5 2 5

NA 5 5 4 4
NA 4 4 3 5

NA 3 2 4 5
NA 1 4 3 4

NA 4 5 3 5
NA 5 5 4 4

NA 4 5 5 5

NA 5 5 4 5
NA 5 5 4 4

NA 4 2 4 5

NA 5 4 5 4
NA 5 4 5 4

NA 5 5 4 3

NA 5 5 5 5

NA 4 5 5 3

NA 5 5 4 5
NA 4 4 5 5
NA 5 5 3 4

NA 4 5 2 4
NA 5 5 5 4
NA 4 5 4 3
NA 4 5 5 4
SA 5 4 3 5
SA 5 4 2 4
SA 5 4 5 5
SA 4 2 4 5
SA 5 4 4 5
SA 4 5 2 5
SA 5 4 4 4
SA 4 5 3 5
SA 4 4 4 3
SA 4 4 2 4
SA 5 4 3 4
SA 3 3 5 5

SA 5 4 3 4

SA 5 4 2 5
SA 4 4 3 4
SA 4 4 3 5
SA 1 5 3 4

SA 5 4 2 4

SA 4 4 4 4
SA 4 4 5 5

SA 5 4 2 4
SA 4 4 5 5
SA 4 4 4 3

SA 3 3 4 5

SA 5 4 4 4

SA 4 4 4 1
SA 4 5 5 5
SA 4 1 4 5
SA 4 5 4 4
SA 4 4 4 5

SA 5 4 3 4
SA 4 4 4 5

SA 5 5 4 3
SA 5 5 4 4

SA 4 4 2 4
SA 4 4 4 5
SA 5 4 4 5
SA 5 4 4 4

SA 5 4 1 4
SA 3 4 4 5
SA 4 3 5 4
SA 4 4 2 3
SA 5 4 3 3
SA 4 3 4 5
SA 5 3 5 5

SA 5 4 4 4
SA 5 4 4 4

SA 3 4 3 4
SA 4 4 1 4
SA 4 3 4 3
Eur 4 5 5 3
Eur 4 4 4 2
Eur 3 4 5 4
Eur 3 4 1 3
Eur 4 4 5 5
Eur 5 5 5 5
Eur 5 5 5 1
Eur 4 5 5 4
Eur 3 4 4 4
Eur 3 5 3 3
Eur 4 4 5 4
Eur 5 4 5 5
Eur 5 3 4 4
Eur 5 5 4 5

Eur 3 4 4 4

Eur 4 5 4 5
Eur 4 5 4 4
Eur 5 4 4 5

Eur 4 5 4 4

Eur 3 5 3 4

Eur 4 4 4 2

Eur 5 5 3 4
Eur 5 3 4 5
Eur 4 5 2 4
Eur 4 3 4 4
Eur 5 4 3 3
Eur 2 4 4 4
Eur 5 4 5 4
Eur 4 5 4 3
Eur 5 4 1 5
Pac 5 4 4 5
Pac 5 5 5 5
Pac 4 4 4 4
Pac 4 3 4 4
Pac 5 4 5 4

Pac 4 4 4 4

Pac 5 5 4 5
Pac 4 2 3 3
Pac 3 4 4 4

Pac 5 4 4 5

China 5 5 4 4
China 5 5 4 3
China 4 4 3 3

China 4 4 3 3

China 4 4 3 2

China 4 4 3 3
China 4 4 3 2

China 3 4 3 3
China 3 4 2 2
China 2 3 2 1
Quartiles
4.75
Frequency Distrbution
Value

North America

1 Quality Ease of Use Price Service 1 2 5 0 2 Quality Ease of Use Price Service 0 2 10 3 3 Quality Ease of Use Price Service 3 6 19 8 4 Quality Ease of Use Price Service 30 47 41 44 5 Quality Ease of Use Price Service 66 43 25 45

South America

1 Quality Ease of Use Price Service 1 1 2 1 2 Quality Ease of Use Price Service 0 1 8 0 3 Quality Ease of Use Price Service 4 6 10 6 4 Quality Ease of Use Price Service 24 35 23 22 5 Quality Ease of Use Price Service 21 7 7 21

Europe

1 Quality Ease of Use Price Service 0 0 2 1 2 Quality Ease of Use Price Service 1 0 1 2 3 Quality Ease of Use Price Service 6 3 4 5 4 Quality Ease of Use Price Service 12 14 14 14 5 Quality Ease of Use Price Service 11 13 9 8

Pacific Rim

1 Quality Ease of Use Price Service 0 0 0 0 2 Quality Ease of Use Price Service 0 1 0 0 3 Quality Ease of Use Price Service 1 1 1 1 4 Quality Ease of Use Price Service 4 6 7 5 5 Quality Ease of Use Price Service 5 2 2 4

China

1 Quality Ease of Use Price Service 0 0 0 1 2 Quality Ease of Use Pric e Service 1 0 2 3 3 Quality Ease of Use Price Service 2 1 6 5 4 Quality Ease of Use Price Service 5 7 2 1 5 Quality Ease of Use Price Service 2 2 0 0

In this chart with the frequency distribution for North America, you can see that the quality, ease of use, and service production areas don’t need to really change anything. Those areas can do the same thing they are doing. The price section in this chart needs improvment in their pricing, by the wide variation in the distribution, you can reduce costs or use different materials.

In this chart with the frequency distribution for South America, you can see that quality and service areas don’t need to change anything they can keep on doing what they are doing. The ease of use can improve in turing all of those 4’s into 5’s for better ratings. Price again can change by reducing costs or changing materials to reduce the pricing.

In this chart with the frequency distribution shown in a historgram for Europe region, you can see all areas; quality, ease of use, price, and service all need improvments to get higher ratings from consumers. Price can reduce costs. Service can train their service workers to help customers better. Ease of use can improve the design of the product. Quality can improve on the procurment side to making better products.

In this chart with the frequency distribution shown in a histogram for Pacific Rim region, you can see most of the areas most rated number is 4’s. So, service, price, and ease of use can improve a little bit to make some of those 4’s into 5’s. Quality can improve the overall quality in products from the procurment side.

In this chart showning the China regions distribution between areas and ratings. All areas need improvment to make the customers want to get these products again. Quality needs to improve the quality of the product by changing the procument side of things. Ease of use comes from that if the quality is good and making it easy to use will follow a little. We need to train or hire more people to help with the companies customer service so our customers have a good experience with our company. Overall everything is connected so if you focus on some areas the others will some what follow.

Unit

Production

Costs

Unit Production Costs
Month Tractor Mower
Jan-10

Feb-10

$50

Mar-10

Apr-10

$51

May-10

$51

Jun-10

$51

Jul-10

$51

Aug-10

$51

Sep-10

Oct-10

$52

Nov-10

$52

Dec-10

$52

Jan-11

Feb-11

$55

Mar-11

$55

Apr-11

$55

May-11

Jun-11

$56

Jul-11

$56

Aug-11

$56

Sep-11

$56

Oct-11

Nov-11

$57

Dec-11

$57

Jan-12

Feb-12

$59

Mar-12

$59

Apr-12

$59

May-12

$59

Jun-12

$60

Jul-12

$60

Aug-12

$60

Sep-12

$60

Oct-12

$60

Nov-12

Dec-12

$61

Jan-13

$59

Feb-13

$59

Mar-13

$59

Apr-13

$59

May-13

$60

Jun-13

$60

Jul-13 $1,976 $60
Aug-13 $1,983 $60
Sep-13 $1,990 $60
Oct-13 $1,996 $60
Nov-13

$61

Dec-13

$61

Jan-14

Feb-14

$63

Mar-14

$63

Apr-14

$63

May-14

$63

Jun-14

$63

Jul-14

Aug-14

$64

Sep-14

$64

Oct-14

$64

Nov-14

$64

Dec-14

$64

$1,750 $50
$1,755
$1,763 $51
$1,770
$1,778
$1,785
$1,792
$1,795
$1,801 $52
$1,804
$1,810
$1,813
$1,835 $55
$1,841
$1,848
$1,854
$1,860 $56
$1,866
$1,872
$1,878
$1,885
$1,892 $57
$1,897
$1,903
$1,925 $59
$1,931
$1,938
$1,944
$1,950
$1,956
$1,963
$1,969
$1,976
$1,983
$1,990 $61
$1,996
$1,940
$1,946
$1,952
$1,958
$1,964
$1,970
$2,012
$2,008
$2,073 $63
$2,077
$2,081
$2,086
$2,092
$2,098
$2,104 $64
$2,110
$2,116
$2,122
$2,129
$2,135

Operating &

Interest

Expenses

Month

Interest

Jan-10

Feb-10

Mar-10

Apr-10

May-10

Jun-10

Jul-10

Aug-10

Sep-10

Oct-10

Nov-10

Dec-10

Jan-11

Feb-11

Mar-11

Apr-11

May-11 $676,581 $154,989

Jun-11

Jul-11

Aug-11

Sep-11

Oct-11

Nov-11

Dec-11

Jan-12

Feb-12

Mar-12

Apr-12

May-12

Jun-12

Jul-12

Aug-12

Sep-12

Oct-12

Nov-12

Dec-12

Jan-13

Feb-13

Mar-13

Apr-13

May-13

Jun-13

Jul-13

Aug-13

Sep-13

Oct-13

Nov-13

Dec-13

Jan-14

Feb-14

Mar-14

Apr-14

May-14

Jun-14

Jul-14

Aug-14

Sep-14

Oct-14

Nov-14

Dec-14

Operating and Interest Expenses
Administrative Depreciation
$633,073 $140,467 $7,244
$607,904 $165,636 $7,679
$630,687 $142,853 $6,887
$613,401 $160,139 $6,917
$607,664 $165,876 $8,316
$632,967 $140,573 $7,428
$609,604 $163,936 $8,737
$607,749 $165,791 $7,054
$603,367 $170,173 $8,862
$629,083 $144,457 $8,488
$611,995 $161,545 $7,049
$625,712 $147,828 $8,807
$656,123 $175,447 $7,430
$652,679 $178,891 $6,791
$655,521 $176,049 $8,013
$676,581 $154,989 $8,979
$7,484
$656,440 $175,130 $7,858
$661,969 $169,601 $7,424
$677,212 $154,358 $6,848
$653,545 $178,025 $6,751
$657,388 $174,182 $8,160
$672,475 $159,095 $7,898
$656,325 $175,245 $8,953
$723,594 $226,526 $9,443
$759,042 $191,078 $8,464
$749,187 $200,933 $10,264
$751,499 $198,621 $8,547
$741,452 $208,668 $8,578
$729,122 $220,998 $9,519
$734,783 $215,337 $9,343
$748,208 $201,912 $8,448
$738,186 $211,934 $9,957
$759,403 $190,717 $9,738
$726,183 $223,937 $9,785
$757,037 $193,083 $8,191
$672,232 $179,138 $9,914
$665,023 $186,347 $9,954
$667,657 $183,713 $10,859
$654,198 $197,172 $9,730
$659,435 $191,935 $10,430
$661,190 $190,180 $10,222
$647,321 $204,049 $10,102
$666,743 $184,627 $10,610
$678,705 $172,665 $9,374
$658,990 $192,380 $10,830
$656,221 $195,149 $9,017
$676,934 $174,436 $10,423
$641,571 $210,589 $9,985
$634,973 $217,187 $9,766
$662,054 $190,106 $11,148
$654,962 $197,198 $9,339
$645,579 $206,581 $9,468
$658,112 $194,048 $10,324
$637,711 $214,449 $9,737
$638,317 $213,843 $9,290
$651,996 $200,164 $9,213
$630,766 $221,394 $10,143
$645,095 $207,065 $10,383
$637,807 $214,353 $9,059

Industry

Mower

Total

Sales

Industry Mower Total Sales
Month NA SA Eur Pac World
Jan-10

571

Feb-10

611

1111

Mar-10

658

Apr-10 86190 778

1237

May-10

886

Jun-10

882

1176

Jul-10

848

1359

Aug-10 79804 735

Sep-10

657

Oct-10

595

Nov-10

553

1262

Dec-10

462

1386

Jan-11

553

1443

Feb-11

615

Mar-11

658

Apr-11

784

1442

May-11

846

1215

Jun-11

838

1333

Jul-11

763

1415

Aug-11

694

1296

Sep-11 60769 625 29444 1402

Oct-11

610

Nov-11

571

Dec-11

512

Jan-12

537

Feb-12

595

1402

7

Mar-12

659

Apr-12

756

1574

May-12

878

1468

Jun-12

825

1560

Jul-12 86190 756 24828

Aug-12

714

Sep-12 60000 651

Oct-12

643

Nov-12

619 15273 1810

Dec-12

548

Jan-13

581

1887

Feb-13

614

1845

Mar-13

622 19655

Apr-13

727 25179 1981

May-13 90093 826

1810

Jun-13

783

1942

Jul-13

681 24737

Aug-13

646

2000

Sep-13

625

Oct-13

617

1

Nov-13

587

2095

Dec-13

591

Jan-14

563

1852

Feb-14

571

1743

Mar-14 83725 625

1892

Apr-14

723

2037

May-14

848

1887

83

Jun-14 99320 792 25306 1944

Jul-14

745

Aug-14

739

2037

61

Sep-14

667

Oct-14

660

2072

Nov-14

8

625

2182 68648

Dec-14

608 6977 2035

60000 13091 1045 74662
77184 17679 96585
77885 22759 1068 102369
27966 116171
96117 27895 1313 126210
97143 30566 129768
84757 29444 116409
28364 1238 110141
64800 28393 1215 95065
59307 2

4444 1154 85500
52157 18000 71972
45049 12453 59349
58627 12778 73401
76200 18214 1515 96545
82871 23889 1373 108791
84904 29455 116584
93100 29464 124625
9

3000 27414 122585
83048 27368 112594
74854 27321 104164
92241
55619 23774 1468 81470
48155 17308 1351 67386
42647 12941 1389 57489
57885 10962 1509 70892
77647 1

5273 9491
8

1845 20556 1524 104583
86095 26786 115211
91776 24828 118949
100680 24737 127801
1441 113216
71887 25179 1545 99325
24545 1667 86863
55566 19286 1698 77193
50857 68558
42596 9107 1731 53982
58095 8571 69135
75566 13158 91182
80286 1923 102486
85140 113027
23103 115832
95472 24286 122482
87308 1961 114686
74476 26607 103729
61698 22982 2075 87381
57238 16897 2019 7677
50673 13750 67105
51238 7818 2150 61797
59712 7547 69673
77961 13889 94165
18302 104544
90297 25192 118250
91143 24706 1185
127363
93922 27083 2170 123919
73143 26042 1019
66699 2

6304 2018 9

5688
56476 22558 81766
5106 14773
46893 56510

Industry Tractor Total Sales

Industry Tractor Total Sales

Month NA SA Eur Pac China World

Jan-10

984

987 278

Feb-10 8592

1090 283

Mar-10 8630

285

Apr-10

1209 288

May-10 8442

5273

286

Jun-10

1019 5315 1327 287

Jul-10 6145 977

289

Aug-10 5882 1057

1268 290

Sep-10 5595 1086 6075 1209 293

Oct-10

1045 6321 1168 295

Nov-10 4494

8381 1127 298 15378

Dec-10

1029 7944

301

Jan-11 5938 1172 5688 1185 306

Feb-11 6633 1273 7037 1286 302

Mar-11 7327 1423

1286 303

Apr-11 8077 1612 7500 1346 307

May-11 7830 1728 6571 1388 309

Jun-11 7103

312

Jul-11

1776 6667 1490 315

Aug-11 6036 1685

1449 318

Sep-11

1679 6635 1394 321 15692

Oct-11 5345

315

Nov-11 4831 1564 6476 1214 318

Dec-11

6250

320

Jan-12

1835

1208 333

Feb-12

6667 1214 313

Mar-12

2202 7228 1256 606

Apr-12 7619

1311 571

May-12

1415 556

Jun-12

7921 1520 526

Jul-12 7752

7677

513

Aug-12 6894

769

Sep-12 6015

1527 750

4

Oct-12

732

Nov-12

2483

1366 714

Dec-12 4444 1986

1262 698

Jan-13 5000

1373 714

Feb-13

1436

Mar-13

1264

Apr-13 9934 2517

1333 22901

May-13

1556

Jun-13 9491

7347 1667 1739

Jul-13

Aug-13 8528 2833 6489

Sep-13 8293 2789 6316 1642 2083

Oct-13

1576 2128

Nov-13 7470

5789

Dec-13

1450

18329

Jan-14

2635 5106 1010 2292

Feb-14 8807 2703 5474 1045 2449

Mar-14

2795

1106

Apr-14

1150 2353

May-14

1244 2600

Jun-14

3311

1357

Jul-14

3390 6304

2600

Aug-14

6064

Sep-14

3232 5789

2453

Oct-14

3131 5699 1128 2517

Nov-14

5604 974

Dec-14

5444 979 2453

8143 5091 15483
1051 5310 16325
1016 6071 1127 17129
8947 1027 5856 1

7327
1057 1221 16278
7500 15448
7170 1324 15905
5926 14422
14258
5233 14061
1078
3913 1085 14272
14289
16530
6981 17320
18842
17826
1815 6990 1449 17669
6239 16487
6762 16250
5664
1618 6311 1256 14844
14402
4454 1522 1171 13716
5299 5922 14597
6529 2115 16836
7120 18412
2151 8200 19852
8387 2214 7941 20513
8110 2278 20355
2100 1675 19716
2128 7200 1584 18575
2367 6735 1739
5368 2211 6495 1422 16226
4964 6061 15587
5816 14207
2257 5051 14394
6284 2353 6082 1063 17218
7785 2457 6327 1478 19310
7604 1512
10645 2612 7789 1642 24244
2749 22993
9182 2887 6979 1733 1702 22483
1700 1915 21465
21123
8221 2765 5833 20523
2746 1493 2292 19789
6509 2534 5591 2245
7267 18311
20477
10168 6022 2400 22489
11044 2997 6064 23607
12120 3131 6344 25439
13459 6593 2653 27374
13048 1421 26764
12275 3277 1263 2549 25428
11347 1173 23995
10667 2

3142
10459 3087 2541 22666
10082 3030 21989

Q3

Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance

2010 12 9916

33333333

2011 12

2012 12 9431

196969697

2013 12 8029

2014 12

5

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups

33333333

4

83333333

0.0000

Within Groups

55

Total

59

826.3333333333 13

5.33
10049 837.4166666667 121.5378787879
785.9166666667 27

4

9.7
669.0833333333 959.3560606061
5955 49

6.2 2940.0227272727
98460

0.3 2461

50.0 178.215438334 2.5396886349
75965.6666666667 1381.1939393939
1060566

Defects

After Delivery

Defects After Delivery
tc={ADAA7B03-0CEE-47E5-A080-EAB2C7DB9812}: [Threaded comment]
Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924
Comment:

We can conclude that Defects had a slight increase from 2010 to 2011 which can be attributed to an increase in unit sales. But over the years from the years of 2010 to 2014 the amount of defects decreased overall . This shows that the company is evolving and improving their manufacturing process.

Defects per million items received from suppliers Month 2010 2011 2012 2013 2014
January 812 828 824 682 571
February

810 832 836 695 575
March

813 847 818 692 547
April

823 839 825 686 542
May 832 832 804 673 532
June

848 840 812 681 496
July

837 849 806 696 472
August

831 857 798 688 460
September

827 839 804 671 441
October

838 842 713 645 445
November

826 828 705 617 438
December

819 816 686 603 436
Total 9916 10049 9431 8029 5955
Q3
Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance
2010 12 9916 826.3333333333 135.3333333333
2011 12 10049 837.4166666667 121.5378787879
2012 12 9431 785.9166666667 2749.7196969697
2013 12 8029 669.0833333333 959.3560606061
2014 12 5955 496.25 2940.0227272727
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 984600.333333333 4 246150.083333333 178.215438334 0.0000 2.5396886349
Within Groups 75965.6666666667 55 1381.1939393939
Total 1060566 59
we conduct two regression analyses (i) what may have happened had the supplier initiative not been impelemented (

ii) how the number of defects might further be reduced in the future

. i) what might have happened had the supplier initiative not been implemented here the analysis is based on months from January 2010 to when the supplier initiative was done in august 2011. Let t be the number of months from December 2009; that is January 2010 be t=1, February 2010 be t=2 and so on Defects per million items received from suppliers is the dependent variabe while time is the independent variable Defects time t
812 1
810 2
813 3
823 4
832 5
848 6
837 7
831 8
827 9
838 10
826 11
819 12
828 13
832 14
847 15
839 16
832 17
840 18
849 19
857 20
The following is the regression equation SUMMARY OUTPUT Regression

Statistics Multiple R 0.6994187048 R Square 0.4

891865246 Adjusted R Square 0.4608079981 Standard Error 9.4

427395385 Observation

s

20

ANOVA

df SS MS F

Significance F Regression 1

1537.0240601504

1537.0240601504

1

7.2

3

79114202 0.0005989968 Residual

18

160

4.97

59398496 89.1653299916 Total 19 3142
Coefficients

Standard Error

t Stat

P-value

Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 816.0368421053 4.3864495472 186.0358436435 5.14111788361825E-31 806.8212535732 825.2524306373

806.8212535732 825.2524306373
X Variable 1 1.5203007519 0.3661737333 4.1518563824

0.0005989968

0.7509982849 2.2896032188

0.7509982849 2.2896032188
Regression Equation y=1.520301x + 816.0368 defects= 1.520301* t + 816.0368 This means had the supplier initiative not taken place, the number of defects would have increased with time where t is the number of months from the baseline. had the supplier initiative of August 2011 not taken place, this regression equation would have predicted what would have happened in subsequent months after august 2011 ii) how the number of defects might further be reduced in the future
here we analyze regression resuts from september 2011 when the supplier initiative was undertaken the new baseline is august 2011, so for september 2011, t=1, october 2011 t=2, and so on. Defects

Time t 839 1
842 2
828 3
816 4
824 5
836 6
818 7
825 8
804 9
812 10
806 11
798 12
804 13
713 14
705 15
686 16
682 17
695 18
692 19
686 20
673 21
681 22
696 23
688 24
671 25
645 26
617 27
603 28
571 29
575 30
547 31
542 32
532 33
496 34
472 35
460 36
441 37
445 38
438 39
436 40
The regression results are:

SUMMARY OUTPUT

Regression Statistics Multiple R

0.9750468977 R Square

0.9507164528 Adjusted R Square

0.9494195173 Standard Error

30.1520143865 Observations

40

ANOVA
df SS MS F Significance F

Regression 1

6664

46.5

29080675

666446.529080675

733.0483948942 1.90959818846179E-26 Residual 38

345

47.4

709193246 909.1439715612 Total 39

700994

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept

89

7.7

307692308 9.716537693 92.3920430916 2.48445466444305E-46 878.0606670317 917.4008714299

878.0606670317 917.4008714299
X Variable 1

-11.181988743 0.4130025443 -27.0748664797 1.9095981884618E-26 -12.0180686833 -10.3459088026

-12.0180686833 -10.3459088026
The value of R-squared means the model is a good fit for the data. The p-values indicate statistical significance Regression Equation

y=-11.182X +897.7308 defects=897.7308-11.182*t here t is the number of months from august 2011

Defects After Delivery by Year

2010 2011 2012 2013 2014 9916 10049 9431 8029 5955 2010 2011 2012 2013 2014 812 828 824 682 571 2010 2011 2012 2013 2014 810 832 836 695 575 2010 2011 2012 2013 2014 813 847 818 692 547 2010 2011 2012 2013 2014 823 839 825 686 542 2010 2011 2012 2013 2014 832 832 804 673 532 2010 2011 2012 2013 2014 848 840 812 681 496 2010 2011 2012 2013 2014 837 849 806 696 472 2010 2011 2012 2013 2014 831 857 798 688 460 2010 2011 2012 2013 2014 827 839 804 671 441 2010 2011 2012 2013 2014 838 842 713 645 445 2010 2011 2012 2013 2014 826 828 705 617 438 2010 2011 2012 2013 2014 819 816 686 603 436

We can conclude that Defects had a slight increase from 2010 to 2011 which can be attributed to an increase in unit sales. But over the years from the years of 2010 to 2014 the amount of defects decreased overall . This shows that the company is evolving and improving their manufacturing process.

Time to Pay Suppliers

Time to Pay Suppliers
Month

Jan-10

Feb-10

Mar-10

Apr-10 8.32
May-10

Jun-10

Jul-10

Aug-10 8.32
Sep-10 8.36
Oct-10 8.33
Nov-10 8.32
Dec-10 8.29
Jan-11

9

Feb-11 7.65
Mar-11 7.58
Apr-11

May-11

Jun-11 7.45
Jul-11

6

Aug-11

Sep-11

Oct-11 7.3
Nov-11

Dec-11

Jan-12

Feb-12

Mar-12 7.22
Apr-12

May-12 7.25
Jun-12 7.23
Jul-12

Aug-12 7.25
Sep-12

Oct-12

Nov-12 7.21
Dec-12 7.23
Jan-13 7.24
Feb-13

Mar-13 7.21
Apr-13 7.23
May-13 7.22
Jun-13 7.19
Jul-13 7.17
Aug-13

Sep-13

Oct-13 7.16
Nov-13 7.15
Dec-13

Jan-14

Feb-14

Mar-14 7.11
Apr-14 7.11
May-14 7.11
Jun-14 7.12
Jul-14

Aug-14

Sep-14 7.09
Oct-14

Nov-14

Dec-14 7.08
Working Days
8.32
8.28
8.29
8.36
8.35
8.34
7.8
7.53
7.48
7.3
7.35
7.32
7.27
7.25
7.22
7.21
7.29
7.28
7.24
7.26
7.19
7.15
7.16
7.14
7.12
7.11
7.08
7.09
7.04
7.06

Employee Satisfaction

Quarter Production

Sample size

Sample size Total Sample size

2.86 100

10 3.51 30

140

100 3.76 10 3.38 30 3.07 140

2.84 100 3.86 10 3.45 30 3.04 140

2.83 100 3.48 10 3.61 30 3.04 140

2.91 100 3.75 20 3.37 30 3.11 150

100 3.92 20

30

150

2.86 100 3.89 20 3.47 30 3.12 150

2.83 100 3.58 20 3.66 30 3.10 150

2.95 100

20 3.71 40 3.25 160

3.01 100 4.01 20 3.53 40 3.27 160

3.03 100 3.92 20 3.62 40

160

2.96 100 3.84 20 3.48 40 3.20 160

3.05 100 3.92 20 3.52 40 3.28 160

3.12 100 4.00 20 3.37 40 3.29 160

3.06 100 3.93 20

40 3.27 160

3.02 100

20 3.59 40 3.25 160

Employee Satisfaction Results
Averages using a 5 point scale
Design & Sales &
Sample size Manager Administration
1st Q-11 3.81 3.07
2nd Q-11 2.91
3rd Q-11
4th Q-11
1st Q-12
2nd Q-12 2.94 3.53 3.19
3rd Q-12
4th Q-12
1st Q-13 3.82
2nd Q-13
3rd Q-13 3.29
4th Q-13
1st Q-14
2nd Q-14
3rd Q-14 3.46
4th Q-14 3.70

Engines

Sample

1

2

3

SUMMARY OUTPUT

4

5

Regression Statistics

6

Multiple R

7

R Square

488993088

8

Adjusted R Square

9

Standard Error

10

Observations 50

11

12

ANOVA

13

df SS MS F Significance F

14

Regression 1

891.5529337335

689638672

15

Residual 48

16

Total 49

458

17

18

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

19

Intercept

57.1339282346 59.2334187042

20

X Variable 1

-0.3284419196 -0.2567873721

21 50.2
22 50.0 The value of R-squared means the model is a good fit for the data.
23 49.7 The p-values indicate statistical significance
24

25

26

27

28

29

30

31

32

33

34

35

36

37 47.4
38

39

40

41

42

43 46.5
44 46.5
45

46

47

48

49

50

Engine Production Time
Production Time (min)
65.1 time is the dependent variable and sample is the independent variable
62.3
60.4
58.7
58.1
5

6.9 0.9213573188
57.0 0.8
56.5 0.8457513778
55.1 1.8182687867
54.3
53.7
53.2
52.8
52.5 891.5529337335 26

9.6 2.48594348198823E-21
52.1 158.6928662665 3.3061013806
51.8 10

5

0.2
51.5
51.3
50.9 58.1836734694 0.5220964329 111.4423884214 1.29129366690705E-59 57.1339282346 59.2334187042
50.5 -0.2926146459 0.0178188871 -16.421600527 2.48594348198821E-21 -0.3284419196 -0.2567873721
4

9.5
49.3 The regression equation is : y=58.18367-0.29261x
49.4 Production Time=58.18367-0.29261*x
49.1 This means that as the number of units produced increase, the production time reduces and therefore creating a more cost-effective means of production
49.0
48.8
48.5
48.3
48.2
48.1
4

7.9
47.7
47.6
47.1
46.9
46.8
46.7
4

6.6
46.2
46.3
46.0
45.8
45.7
45.6

Q4

Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance

Current 30

30

30 8953

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups

2

Within Groups

87

Total

89

8688 289.6 2061.1448275862
Process A 8565 285.5 4217.6379310345
Process B 298.4333333333 435.3574712644
2621.0888888889 1310.5444444444 0.5855750995 0.5589648105 3.1012957567
194710.066666667 2238.046743295
197331.155555556

Transmission Costs

Q4
Current Process A Process B

$242.00

Anova: Single Factor

SUMMARY

$242.00 Groups Count Sum Average Variance

Current 30 8688 289.6 2061.1448275862

Process A 30 8565 285.5 4217.6379310345

Process B 30 8953 298.4333333333 435.3574712644

$286.00

$242.00

$300.00 ANOVA

$314.00

Source of Variation SS df MS F P-value F crit

$300.00 Between Groups 2621.0888888889 2 1310.5444444444 0.5855750995 0.5589648105 3.1012957567

Within Groups 194710.066666667 87 2238.046743295

$242.00

Total 197331.155555556 89

$273.00

$281.00

$304.00

$391.00

$312.00

$306.00

$299.00 $301.00 $312.00
$300.00 $277.00

$278.00

$288.00

$303.00

$315.00

$286.00

$321.00

Unit Tractor Transmission Costs
$242.00 $292.00
$176.00 $275.00 $321.00
$286.00 $199.00 $314.00
$269.00 $219.00
$327.00 $273.00 $278.00
$264.00 $265.00 $300.00
$296.00 $435.00 $301.00
$333.00 $285.00
$384.00 $315.00
$288.00 $387.00
$299.00 $304.00
$302.00 $145.00
$335.00 $266.00 $351.00
$216.00 $277.00
$281.00 $331.00 $284.00
$289.00 $247.00 $276.00
$259.00 $280.00 $312.00
$322.00 $267.00
$209.00 $210.00
$282.00 $391.00 $303.00
$297.00 $306.00
$346.00
$236.00 $230.00 $287.00
$383.00 $332.00
$295.00
$336.00
$217.00 $313.00
$274.00
$339.00 $338.00

Blade

Weight

Blade Weight Sample Weight

1

4.88

Question 4( Average blade

weight

)

2 4.92

we use the average function in Excel 3

5.02 average blade weight 4.9908 4 4.97
5 5.00

for variability, we use the sample standard deviation 6 4.99

s.d. 0.10928756 7 4.86
8

5.07 9

5.04 QUESTION 5 (probability blade weights will exceed 5.20) 10 4.87

we calculate the z-score associated with 5.20 11 4.77 z

1.9142160368 12 5.14

probability (Z. Z>1.914216) 0.027796 13 5.04
14 5.00
15 4.88

QUESTION 6 (probability blade weights will be

less than 4.80

) 16 4.91
17 5.09

we calculate the z-score associated with 4.80 18 4.97 z

-1.7458528672 19 4.98

probability (Z<-1.74585) 0.0404182609 20 5.07
21

5.03 QUESTION 7 (actual pecentage less than 4.80 or greater than 5.20) 22 5.12
23 5.08 less than 4.80 8
24 4.86

more than 5.20

7
25 5.11 total 15
26 4.92
27

5.18 actaul percentage <4.80 or > 5.20 4.2857% 28

4.93 29 5.12
30 5.08

QUESTION 8 (is the process stable over time) 31 4.75

we can make a scatter plot to investigate the stability of the process 32 4.99
33 5.00
34 4.91
35 5.18
36 4.95
37

4.63 38

4.89 39 5.11
40 5.05
41 5.03
42 5.02
43 4.96
44 5.04
45 4.93
46 5.06
47 5.07
48 5.00
49 5.03
50 5.00
51 4.95

from the scatter plot, we can observe that the process is quite stable because most values are close to each other 52 4.99
53 5.02
54 4.90

Question 9 (are there any outliers) 55

5.10 5.87 56

5.01 yes, there are possible outliers. For example,the 171st blade with a weight of 5.87 is an outlier because it is far from the other values. 57 4.84
58 5.01
59 4.88

QUESTION 10 (Is the distribution normal) 60 4.97

beloe mean

180
61 4.97

above mean

170
62 5.06
63 5.06

since the number of values below the mean is close to the number of values above the mean, the distribution is pretty normal 64 5.04
65 4.87
66 5.00
67 5.03
68 5.02
69 5.02
70 5.06
71

5.21 72 5.09
73 4.97
74 5.01
75 4.90
76 4.89
77 4.93
78

5.16 79 5.02
80 5.01
81 5.10
82 5.03
83 5.07
84 4.92
85 5.08
86 4.96
87

4.74 88 4.91
89 5.12
90 5.00
91 4.93
92 4.88
93 4.88
94 4.81
95 5.16
96 5.03
97 4.87
98 5.09
99

4.94 100 5.08
101 4.97
102

5.23 103 5.12
104 5.09
105 5.12
106 4.93
107

4.79 108 5.10
109 5.12
110 4.86
111 5.00
112 4.94
113 4.95
114 4.95
115 4.87
116 5.09
117 4.94
118 5.01
119 5.04
120 5.05
121 5.05
122 4.97
123 4.96
124 4.96
125 4.99
126 5.04
127 4.91
128 5.19
129 5.03
130 4.99
131 5.12
132 4.97
133 4.88
134 5.07
135 5.01
136 4.89
137 4.95
138 5.09
139 5.09
140 4.89
141 4.93
142 4.85
143 5.03
144 4.92
145 5.09
146 4.99
147 4.92
148 4.87
149 4.90
150 5.02
151 5.21
152 5.02
153 4.9
154 5
155 5.16
156 5.03
157 4.96
158 5.04
159 4.98
160 5.07
161 5.02
162 5.08
163 4.85
164 4.9
165 4.97
166 5.09
167 4.89
168 4.87
169 5.01
170 4.97
171 5.87
172 5.33
173 5.11
174 5.07
175 4.93
176 4.99
177 5.04
178 5.14
179 5.09
180 5.06
181 4.85
182 4.93
183 5.04
184 5.09
185 5.07
186 4.99
187 5.01
188 4.88
189 4.93
190 5.1
191 4.94
192 4.88
193 4.89
194 4.89
195 4.85
196 4.82
197 5.02
198 4.9
199 4.73
200 5.04
201 5.07
202 4.81
203 5.04
204 5.03
205 5.01
206 5.14
207 5.12
208 4.89
209 4.91
210 4.97
211 4.98
212 5.01
213 5.01
214 5.09
215 4.93
216 5.04
217 5.11
218 5.07
219 4.95
220 4.86
221 5.13
222 4.95
223

5.22 224 4.81
225 4.91
226 4.95
227 4.94
228 4.81
229 5.11
230 4.81
231 4.97
232 5.07
233 5.03
234 4.81
235 4.95
236 4.89
237 5.08
238 4.93
239 4.99
240 4.94
241 5.13
242 5.02
243 5.07
244 4.82
245 5.03
246 4.85
247 4.89
248 4.82
249 5.18
250 5.02
251 5.05
252 4.88
253 5.08
254 4.98
255 5.02
256 4.99
257 5.02
258 5.03
259 5.02
260 5.07
261 4.95
262 4.95
263 4.94
264 5.12
265 5.08
266 4.91
267 4.96
268 4.96
269 4.94
270 5.19
271 4.91
272 5.01
273 4.93
274 5.05
275 4.96
276 4.92
277 4.95
278 5.08
279 4.97
280 5.04
281 4.94
282 4.98
283 5.03
284 5.05
285 4.91
286 5.09
287 5.21
288 4.87
289 5.02
290 4.81
291 4.96
292 5.06
293 4.86
294 4.96
295 4.99
296 4.94
297 5.06
298 4.95
299 5.02
300 5.01
301 5.04
302 5.01
303 5.02
304 5.03
305 5.18
306 5.08
307 5.14
308 4.92
309 4.97
310 4.92
311 5.14
312 4.92
313 5.03
314 4.98
315

4.76 316 4.94
317 4.92
318 4.91
319 4.96
320 5.02
321 5.13
322 5.13
323 4.92
324 4.98
325 4.89
326 4.88
327 5.11
328 5.11
329 5.08
330 5.03
331 4.94
332 4.88
333 4.91
334 4.86
335 4.89
336 4.91
337 4.87
338 4.93
339 5.14
340 4.87
341 4.98
342 4.88
343 4.88
344 5.01
345 4.93
346 4.93
347 4.99
348 4.91
349 4.96
350 4.78

Blade Weights

Weight 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 15 9 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 4.88 4.92 5.0199999999999996 4.97 5 4.99 4.8600000000000003 5.07 5.04 4.87 4.7699999999999996 5.14 5.04 5 4.88 4.91 5.09 4.97 4.9800000000000004 5.07 5.03 5.12 5.08 4.8600000000000003 5.1100000000000003 4.92 5.18 4.93 5.12 5.08 4.75 4.99 5 4.91 5.18 4.95 4.63 4.8899999999999997 5.1100000000000003 5.05 5.03 5.0199999999999996 4.96 5.04 4.93 5.0599999999999996 5.07 5 5.03 5 4.95 4.99 5.0199999999999996 4.9000000000000004 5.0999999999999996 5.01 4.84 5.01 4.88 4.97 4.97 5.0599999999999996 5.0599999999999996 5.04 4.87 5 5.03 5.0199999999999996 5.0199999999999996 5.0599999999999996 5.21 5.09 4.97 5.01 4.9000000000000004 4.8899999999999997 4.93 5.16 5.0199999999999996 5.01 5.0999999999999996 5.03 5.07 4.92 5.08 4.96 4.74 4.91 5.12 5 4.93 4.88 4.88 4.8099999999999996 5.16 5.03 4.87 5.09 4.9400000000000004 5.08 4.97 5.23 5.12 5.09 5.12 4.93 4.79 5.0999999999999996 5.12 4.8600000000000003 5 4.9400000000000004 4.95 4.95 4.87 5.09 4.9400000000000004 5.01 5.04 5.05 5.05 4.97 4.96 4.96 4.99 5.04 4.91 5.19 5.03 4.99 5.12 4.97 4.88 5.07 5.01 4.8899999999999997 4.95 5.09 5.09 4.8899999999999997 4.93 4.8499999999999996 5.03 4.92 5.09 4.99 4.92 4.87 4.9000000000000004 5.0199999999999996 5.21 5.0199999999999996 4.9000000000000004 5 5.16 5.03 4.96 5.04 4.9800000000000004 5.07 5.0199999999999996 5.08 4.8499999999999996 4.9000000000000004 4.97 5.09 4.8899999999999997 4.87 5.01 4.97 5.87 5.33 5.1100000000000003 5.07 4.93 4.99 5.04 5.14 5.09 5.0599999999999996 4.8499999999999996 4.93 5.04 5.09 5.07 4.99 5.01 4.88 4.93 5.0999999999999996 4.9400000000000004 4.88 4.8899999999999997 4.8899999999999997 4.8499999999999996 4.82 5.0199999999999996 4.9000000000000004 4.7300 000000000004 5.04 5.07 4.8099999999999996 5.04 5.03 5.01 5.14 5.12 4.8899999999999997 4.91 4.97 4.9800000000000004 5.01 5.01 5.09 4.93 5.04 5.1100000000000003 5.07 4.95 4.8600000000000003 5.13 4.95 5.22 4.8099999999999996 4.91 4.95 4.9400000000000004 4.8099999999999996 5.1100000000000003 4.8099999999999996 4.97 5.07 5.03 4.8099999999999996 4.95 4.8899999999999997 5.08 4.93 4.99 4.9400000000000004 5.13 5.0199999999999996 5.07 4.82 5.03 4.8499999999999996 4.8899999999999997 4.82 5.18 5.0199999999999996 5.05 4.88 5.08 4.9800000000000004 5.0199999999999996 4.99 5.0199999999999996 5.03 5.0199999999999996 5.07 4.95 4.95 4.9400000000000004 5.12 5.08 4.91 4.96 4.96 4.9400000000000004 5.19 4.91 5.01 4.93 5.05 4.96 4.92 4.95 5.08 4.97 5.04 4.9400000000000004 4.9800000000000004 5.03 5.05 4.91 5.09 5.21 4.87 5.0199999999999996 4.8099999999999996 4.96 5.0599999999999996 4.8600000000000003 4.96 4.99 4.94000 00000000004 5.0599999999999996 4.95 5.0199999999999996 5.01 5.04 5.01 5.0199999999999996 5.03 5.18 5.08 5.14 4.92 4.97 4.92 5.14 4.92 5.03 4.9800000000000004 4.76 4.9400000000000004 4.92 4.91 4.96 5.0199999999999996 5.13 5.13 4.92 4.9800000000000004 4.8899999999999997 4.88 5.1100000000000003 5.1100000000000003 5.08 5.03 4.9400000000000004 4.88 4.91 4.8600000000000003 4.8899999999999997 4.91 4.87 4.93 5.14 4.87 4.9800000000000004 4.88 4.88 5.01 4.93 4.93 4.99 4.91 4.96 4.78

sample

weight

Mower Test

Sample
Observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1

Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass

2 Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass
3 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass
4 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
5 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
6 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
7 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
8 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass
9 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
10 Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
11 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
12 Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
13 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail
14 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
15 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
16 Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
17 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
18 Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
19 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
20 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
21 Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass
22 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
23 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
24 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
25 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
26 Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
27 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
28 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
29 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
30 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
31 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
32 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
33 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
34 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
35 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
36 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
37 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
38 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
39 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
40 Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
41 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
42 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
43 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
44 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
45 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
46 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
47 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
48 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
49 Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
50 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
51 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
52 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
53 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
54 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
55 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass
56 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
57 Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
58 Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
59 Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
60 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
61 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
62 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
63 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail
64 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
65 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
66 Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
67 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
68 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
69 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
70 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass
71 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
72 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
73 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
74 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
75 Pass Pass Fail Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass
76 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
77 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
78 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
79 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
80 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
81 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
82 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
83 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
84 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
85 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
86 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass
87 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
88 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass
89 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
90 Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
91 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
92 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
93 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
94 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
95 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
96 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
97 Pass Pass Pass Pass Pass Fail Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
98 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
99 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
100 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass

)

54

3000

fraction of mowers that fail

be the associated probability per failure

x P(X=x)
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 0
17 0
18 0
19 0
20 0
Mower Test Functional Performance
Pass Fail
question 1
bernoulli distribution
question 2 (

fraction of mowers that fail
number of mowers that fail
total number of mowers
0.018
QUESTION 3 (Probability of having x failures)
Let x be the number of failures and

P(X=x) x is from 0 to 20
0.1626105724
0.2980641858
0.2704431665
0.1619354195
0.0719804589
0.0253324303
0.0073520801
0.001809677
0.000385616
0.0000722539
0.0000120521
0.0000018075
0.0000002457
0.0000000305
0.0000000035
0.0000000004
for blade weight questions, check the blade weight tab

Employee Retention

Employee Retention

Differences

ity Status

Gender

Local

t-Test: Two-Sample Assuming Equal Variances

10 18 3.01 33 F Y Y
10 16 2.78 25 M Y Y

Local

10 18 3.15 26 M Y N

Mean

10 18 3.86 24 F Y Y Variance

Variance

9.6 16 2.58 25 F Y Y Observations 13 27 Observations 22
8.5 16 2.96 23 M Y Y

Pooled Variance

8.4 17 3.56 35 M Y Y

0 Hypothesized Mean Difference 0

8.4 16 2.64 23 M Y Y df 38 df 37
8.2 18 3.43 32 F Y Y t Stat

t Stat

7.9 15 2.75 34 M N Y

P(T<=t) one-tail

7.6 13 2.95 28 M N Y

t Critical one-tail

7.5 13

23 M N Y

P(T<=t) two-tail

7.5 16 2.86 24 M Y Y

t Critical two-tail

7.2 15 2.38 23 F N Y
6.8 16 3.47 27 F Y Y
6.5 16 3.10 26 M Y Y
6.3 13 2.98 21 M N Y

6.2 16 2.71 23 M Y N
5.9 13 2.95 20 F N Y t-Test: Two-Sample Assuming Equal Variances
5.8 18

25 M Y Y

5.4 16 2.75 24 M Y N

College Grad

5.1 17 2.48 32 M Y N Mean

4.8 14 2.76 28 M N Y Variance

4.7 16 3.12 25 F Y N Observations 13 27
4.5 13 2.96 23 M N Y Pooled Variance

4.3 16 2.80 25 M Y N Hypothesized Mean Difference 0
4 17 3.57 24 M Y Y df 38
3.9 16 3.00 26 F Y N t Stat

3.7 16 2.86 23 M Y N P(T<=t) one-tail 3.7 15 3.19 24 M N N t Critical one-tail 1.6859544602
3.7 16 3.50 23 F Y N P(T<=t) two-tail 3.5 14 2.84 21 M N Y t Critical two-tail 2.0243941639
3.4 16

24 M Y N

2.5 13 1.75 22 M N N
1.8 16 2.98 25 M Y N
1.5 15 2.13 22 M N N SUMMARY OUTPUT
0.9 16 2.79 23 F Y Y
0.8 18 3.15 26 M Y N Regression Statistics
0.7 13 1.84 22 F N N Multiple R

0.3 18 3.79 24 F Y N R Square

Adjusted R Square

Standard Error

Observations 40
ANOVA
df SS MS F Significance F
Regression 3

Residual 36

Total 39

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept

-11.8719468233 6.3977299037

X Variable 1

-0.7873616722 0.6532530847

-1.7203721287 3.0803347674

0.0176540348 0.5654175903

Regression Equation

SUMMARY OUTPUT
Regression Statistics
Multiple R

R Square

Adjusted R Square

Standard Error

Observations 40

ANOVA
df SS MS F Significance F

Regression 1

44.6460424662

Residual 38

Total 39 314.69375

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept

-8.1740507134 4.144319346

X Variable 1

0.0165919207

0.0577563944 0.5428293458

Gender Local
YearsPLE YrsEducation College GPA Age College Grad t-Test: Two-Sample Assuming Equal Variances
Female Male
Mean 5.5307692308 5.5407407407 7.2227272727
12.2506410256 6.4494301994 3.7027922078
Pooled Variance 8.281391513 4.5625386617
Hypothesized Mean Difference
-0.0102643826 5.2094943403
P(T<=t) one-tail 0.4959320257 0.0000036859
t Critical one-tail 1.6859544602 1.6870936196
2.50 P(T<=t) two-tail 0.9918640514 0.0000073717
t Critical two-tail 2.0243941639 2.026192463
College Graduation
3.36
Non-College Grad
4.8923076923 5.8481481481
5.8191025641 9.1095156695
8.0704378468
-0.9966907369
0.162609673
0.325219346
3.13
0.3875599015
0.1502026772
0.0793862337
2.7255269941
47.2678437532 15.7559479177 2.1210141269 0.1146353121
267.4259062468 7.4284973957
314.69375
-2.7371084598 4.504149393 -0.6076859848 0.5472103219 -11.8719468233 6.3977299037
-0.0670542938 0.3551646907 -0.188797748 0.851311676 -0.7873616722 0.6532530847
X Variable 2 0.6799813193 1.1835513772 0.5745262372 0.5691848142 -1.7203721287 3.0803347674
X Variable 3 0.2915358125 0.1350439268 2.1588220923 0.0376058426 0.0176540348 0.5654175903
The value of R-Squared is low, meaning the model is not a good fit for the data.
y=-0.06705X1+ 0.679981X2+ 0.291536X3 -2.73711
YearsPLE=-0.06705*YrsEducation+0679981*College GPA +0.291536*Age -2.73711
From the p-values of the multiple regression equation above, at a significance level of 0.05, only the age variable is statistically significant
There is sufficient evidence that the age variable has a non-zero correlation with the years of employee retention
There is insufficient evidence that the variables years of education, college GPA, are correlated with the years of employee retention therefore we fail to reject the null hypothesis because they have p-values greater than 005. They are statistically insignificant. The intercept is als statistically insignificant.
Therefore, the age variable seems to be a good predictor of employee retention while years of education and college GPA are not good predictors of years of retention.
The best regression equation is the one with the age as the independent variable
The following is the regression equation with only age as the independent variable
0.3766581987
0.1418713987
0.1192890671
2.6658054354
44.6460424662 6.2824070206 0.0165919207
270.0477075338 7.1065186193
-2.0148656837 3.0424830991 -0.6622438377 0.5118115929 -8.1740507134 4.144319346
0.3002928701 0.1198069428 2.5064730241 0.0577563944 0.5428293458
YearsPLE=0.300293*Age-2.01487
The low value of R-squared may indicate that this is not a good model

5a-Gender

Female Male
10 10 t-Test: Two-Sample Assuming Equal Variances
10 10
9.6 8.5 Female Male
8.2 8.4 Mean 5.5307692308 5.5407407407
7.2 8.4 Variance 12.2506410256 6.4494301994
6.8 7.9 Observations 13 27
5.9 7.6 Pooled Variance 8.281391513
4.7 7.5 Hypothesized Mean Difference 0
3.9 7.5 df 38
3.7 6.5 t Stat -0.0102643826
0.9 6.3 P(T<=t) one-tail 0.4959320257 0.7 6.2 t Critical one-tail 1.6859544602
0.3 5.8 P(T<=t) two-tail 0.9918640514 5.4 t Critical two-tail 2.0243941639
5.1
4.8
4.5
4.3
4
3.7

3.7

3.5
3.4
2.5
1.8
1.5
0.8

5b-Col

Non-College Grad College Grad t-Test: Two-Sample Assuming Equal Variances
7.9 10
7.6 10 Non-College Grad College Grad
7.5 10 Mean 4.8923076923 5.8481481481
7.2 10 Variance 5.8191025641 9.1095156695
6.3 9.6 Observations 13 27
5.9 8.5 Pooled Variance 8.0704378468
4.8 8.4 Hypothesized Mean Difference 0
4.5 8.4 df 38
3.7 8.2 t Stat -0.9966907369
3.5 7.5 P(T<=t) one-tail 0.162609673 2.5 6.8 t Critical one-tail 1.6859544602
1.5 6.5 P(T<=t) two-tail 0.325219346 0.7 6.2 t Critical two-tail 2.0243941639
5.8
5.4

5.1

4.7

4.3
4

3.9

3.7
3.7
3.4
1.8

0.9

0.8

0.3

5c-Local

Local

t-Test: Two-Sample Assuming Equal Variances

10 10

10 6.2 Local Non- Local
10 5.4 Mean 7.2227272727

9.6 5.1 Variance 3.7027922078

8.5 4.7 Observations 22 17
8.4 4.3 Pooled Variance 4.5625386617
8.4 3.9 Hypothesized Mean Difference 0
8.2 3.7 df 37
7.9 3.7 t Stat 5.2094943403
7.6 3.7 P(T<=t) one-tail 0.0000036859 7.5 3.4 t Critical one-tail 1.6870936196
7.5 2.5 P(T<=t) two-tail 0.0000073717 7.2 1.8 t Critical two-tail 2.026192463
6.8 1.5
6.5 0.8
6.3 0.7
5.9 0.3

5.8
4.8
4.5
4
3.5
0.9

Non- Local
3.6294117647
5.6909558824

Purchasing Survey

Purchasing Survey

Industry

4.1 0.6 6.9 4.7 2.4 2.3 5.2 32 4.2 0 0 1 1
1.8 3 6.3 6.6 2.5 4 8.4 43 4.3 1 1 0 1
3.4 5.2 5.7 6 4.3 2.7 8.2 48 5.2 1 1 1 2
2.7 1 7.1 5.9 1.8 2.3 7.8 32 3.9 1 1 1 1
6 0.9 9.6 7.8 3.4 4.6 4.5 58 6.8 0 0 1 3
1.9 3.3 7.9 4.8 2.6 1.9 9.7 45 4.4 1 1 1 2
4.6 2.4 9.5 6.6 3.5 4.5 7.6 46 5.8 0 0 1 1
1.3 4.2 6.2 5.1 2.8 2.2 6.9 44 4.3 1 1 0 2
5.5 1.6 9.4 4.7 3.5 3 7.6 63 5.4 0 0 1 3
4 3.5 6.5 6 3.7 3.2 8.7 54 5.4 1 1 0 2
2.4 1.6 8.8 4.8 2 2.8 5.8 32 4.3 0 0 0 1
3.9 2.2 9.1 4.6 3 2.5 8.3 47 5 0 0 1 2
2.8 1.4 8.1 3.8 2.1 1.4 6.6 39 4.4 1 1 0 1
3.7 1.5 8.6 5.7 2.7 3.7 6.7 38 5 0 0 1 1
4.7 1.3 9.9 6.7 3 2.6 6.8 54 5.9 0 0 0 3
3.4 2 9.7 4.7 2.7 1.7 4.8 49 4.7 0 0 0 3
3.2 4.1 5.7 5.1 3.6 2.9 6.2 38 4.4 0 1 1 2
4.9 1.8 7.7 4.3 3.4 1.5 5.9 40 5.6 0 0 0 2
5.3 1.4 9.7 6.1 3.3 3.9 6.8 54 5.9 0 0 1 3
4.7 1.3 9.9 6.7 3 2.6 6.8 55 6 0 0 0 3
3.3 0.9 8.6 4 2.1 1.8 6.3 41 4.5 0 0 0 2
3.4 0.4 8.3 2.5 1.2 1.7 5.2 35 3.3 0 0 0 1
3 4 9.1 7.1 3.5 3.4 8.4 55 5.2 0 1 0 3
2.4 1.5 6.7 4.8 1.9 2.5 7.2 36 3.7 1 1 0 1
5.1 1.4 8.7 4.8 3.3 2.6 3.8 49 4.9 0 0 0 2
4.6 2.1 7.9 5.8 3.4 2.8 4.7 49 5.9 0 0 1 3
2.4 1.5 6.6 4.8 1.9 2.5 7.2 36 3.7 1 1 0 1
5.2 1.3 9.7 6.1 3.2 3.9 6.7 54 5.8 0 0 1 3
3.5 2.8 9.9 3.5 3.1 1.7 5.4 49 5.4 0 0 1 3
4.1 3.7 5.9 5.5 3.9 3 8.4 46 5.1 1 1 0 2
3 3.2 6 5.3 3.1 3 8 43 3.3 1 1 0 1
2.8 3.8 8.9 6.9 3.3 3.2 8.2 53 5 0 1 0 3
5.2 2 9.3 5.9 3.7 2.4 4.6 60 6.1 0 0 0 3
3.4 3.7 6.4 5.7 3.5 3.4 8.4 47 3.8 1 1 0 1
2.4 1 7.7 3.4 1.7 1.1 6.2 35 4.1 1 1 0 1
1.8 3.3 7.5 4.5 2.5 2.4 7.6 39 3.6 1 1 1 1
3.6 4 5.8 5.8 3.7 2.5 9.3 44 4.8 1 1 1 2
4 0.9 9.1 5.4 2.4 2.6 7.3 46 5.1 0 0 1 3
0 2.1 6.9 5.4 1.1 2.6 8.9 29 3.9 1 1 1 1
2.4 2 6.4 4.5 2.1 2.2 8.8 28 3.3 1 1 1 1
1.9 3.4 7.6 4.6 2.6 2.5 7.7 40 3.7 1 1 1 1
5.9 0.9 9.6 7.8 3.4 4.6 4.5 58 6.7 0 0 1 3
4.9 2.3 9.3 4.5 3.6 1.3 6.2 53 5.9 0 0 0 3
5 1.3 8.6 4.7 3.1 2.5 3.7 48 4.8 0 0 0 2
2 2.6 6.5 3.7 2.4 1.7 8.5 38 3.2 1 1 1 1
5 2.5 9.4 4.6 3.7 1.4 6.3 54 6 0 0 0 3
3.1 1.9 10 4.5 2.6 3.2 3.8 55 4.9 0 0 1 3
3.4 3.9 5.6 5.6 3.6 2.3 9.1 43 4.7 1 1 1 2
5.8 0.2 8.8 4.5 3 2.4 6.7 57 4.9 0 0 1 3
5.4 2.1 8 3 3.8 1.4 5.2 53 3.8 0 0 1 3
3.7 0.7 8.2 6 2.1 2.5 5.2 41 5 0 0 0 2
2.6 4.8 8.2 5 3.6 2.5 9 53 5.2 1 1 1 2
4.5 4.1 6.3 5.9 4.3 3.4 8.8 50 5.5 1 1 0 2
2.8 2.4 6.7 4.9 2.5 2.6 9.2 32 3.7 1 1 1 1
3.8 0.8 8.7 2.9 1.6 2.1 5.6 39 3.7 0 0 0 1
2.9 2.6 7.7 7 2.8 3.6 7.7 47 4.2 0 1 1 2
4.9 4.4 7.4 6.9 4.6 4 9.6 62 6.2 1 1 0 2
5.4 2.5 9.6 5.5 4 3 7.7 65 6 0 0 0 3
4.3 1.8 7.6 5.4 3.1 2.5 4.4 46 5.6 0 0 1 3
2.3 4.5 8 4.7 3.3 2.2 8.7 50 5 1 1 1 2
3.1 1.9 9.9 4.5 2.6 3.1 3.8 54 4.8 0 0 1 3
5.1 1.9 9.2 5.8 3.6 2.3 4.5 60 6.1 0 0 0 3
4.1 1.1 9.3 5.5 2.5 2.7 7.4 47 5.3 0 0 1 3
3 3.8 5.5 4.9 3.4 2.6 6 36 4.2 0 1 1 2
1.1 2 7.2 4.7 1.6 3.2 10 40 3.4 1 1 1 1
3.7 1.4 9 4.5 2.6 2.3 6.8 45 4.9 0 0 0 2
4.2 2.5 9.2 6.2 3.3 3.9 7.3 59 6 0 0 0 3
1.6 4.5 6.4 5.3 3 2.5 7.1 46 4.5 1 1 0 2
5.3 1.7 8.5 3.7 3.5 1.9 4.8 58 4.3 0 0 0 3
2.3 3.7 8.3 5.2 3 2.3 9.1 49 4.8 1 1 1 2
3.6 5.4 5.9 6.2 4.5 2.9 8.4 50 5.4 1 1 1 2
5.6 2.2 8.2 3.1 4 1.6 5.3 55 3.9 0 0 1 3
3.6 2.2 9.9 4.8 2.9 1.9 4.9 51 4.9 0 0 0 3
5.2 1.3 9.1 4.5 3.3 2.7 7.3 60 5.1 0 0 1 3
3 2 6.6 6.6 2.4 2.7 8.2 41 4.1 1 1 0 1
4.2 2.4 9.4 4.9 3.2 2.7 8.5 49 5.2 0 0 1 2
3.8 0.8 8.3 6.1 2.2 2.6 5.3 42 5.1 0 0 0 2
3.3 2.6 9.7 3.3 2.9 1.5 5.2 47 5.1 0 0 1 3
1 1.9 7.1 4.5 1.5 3.1 9.9 39 3.3 1 1 1 1
4.5 1.6 8.7 4.6 3.1 2.1 6.8 56 5.1 0 0 0 3
5.5 1.8 8.7 3.8 3.6 2.1 4.9 59 4.5 0 0 0 3
3.4 4.6 5.5 8.2 4 4.4 6.3 47 5.6 0 1 1 2
1.6 2.8 6.1 6.4 2.3 3.8 8.2 41 4.1 1 1 0 1
2.3 3.7 7.6 5 3 2.5 7.4 37 4.4 0 1 0 1
2.6 3 8.5 6 2.8 2.8 6.8 53 5.6 1 1 0 2
2.5 3.1 7 4.2 2.8 2.2 9 43 3.7 1 1 1 1
2.4 2.9 8.4 5.9 2.7 2.7 6.7 51 5.5 1 1 0 2
2.1 3.5 7.4 4.8 2.8 2.3 7.2 36 4.3 0 1 0 1
2.9 1.2 7.3 6.1 2 2.5 8 34 4 1 1 1 1
4.3 2.5 9.3 6.3 3.4 4 7.4 60 6.1 0 0 0 3
3 2.8 7.8 7.1 3 3.8 7.9 49 4.4 0 1 1 2
4.8 1.7 7.6 4.2 3.3 1.4 5.8 39 5.5 0 0 0 2
3.1 4.2 5.1 7.8 3.6 4 5.9 43 5.2 0 1 1 2
1.9 2.7 5 4.9 2.2 2.5 8.2 36 3.6 1 1 0 1
4 0.5 6.7 4.5 2.2 2.1 5 31 4 0 0 1 1
0.6 1.6 6.4 5 0.7 2.1 8.4 25 3.4 1 1 1 1
6.1 0.5 9.2 4.8 3.3 2.8 7.1 60 5.2 0 0 1 3
2 2.8 5.2 5 2.4 2.7 8.4 38 3.7 1 1 0 1
3.1 2.2 6.7 6.8 2.6 2.9 8.4 42 4.3 1 1 0 1
2.5 1.8 9 5 2.2 3 6 33 4.4 0 0 0 1
Delivery speed Price level Price flexibility Manufacturing image Overall service Salesforce image Product quality Usage Level Satisfaction Level Size of firm Purchasing Structure Buying Type

Order a unique copy of this paper

600 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
Top Academic Writers Ready to Help
with Your Research Proposal

Order your essay today and save 25% with the discount code GREEN